Nel nostro sistema solare il pianeta più simile alla Terra è Venere. Composizione chimica, densità e dimensioni sono molto simili tra i due pianeti. Anche la loro distanza al Sole è tutto sommato abbastanza simile. Eppure Venere, a dispetto del nome che evoca la dea romana della bellezza, è in realtà un inferno, torrido e secco. Tutta l’acqua presente sul pianeta risiede nella sommità delle sue nubi e quando lì decide di piovere, piove acido solforico.
Un nuovo studio giapponese spiega come sia avvenuto.
L’acqua liquida non è solo necessaria alla vita come la conosciamo. Questa è importante anche per il suo ruolo di lubrificante per le placche tettoniche e del mantello superiore. Essendo infatti abbastanza solubile nei silicati fusi, l’acqua penetra in profondità giù fino al mantello e permette alle placche tettoniche di muoversi più facilmente riducendone l’attrito reciproco. È quindi una componente importante della litosfera, lo strato più esterno del pianeta, che comprende la crosta e la parte più esterna del mantello responsabile della tettonica a zolle.
All’epoca della sua formazione, la relativamente poca acqua presente nella fascia più interna del Sistema Solare era chimicamente legata a silicati idrati e ai composti del carbonio più pesanti. Questa era però sufficiente a fornire una discreta quantità di acqua 1 ai neonati pianeti.
Le condizioni di pressione e temperatura che si stabilirono nei pianeti subito dopo il raggiungimento dell’autosostentamento gravitazionale favorirono la loro differenziazione chimica in base al peso atomico e molecolare degli elementi: nel nucleo si accumularono quelli più pesanti, mentre nella parte più esterna si raccolsero tutti gli elementi più leggeri 2.
Questa differenziazione, altrimenti nota come Catastrofe del Ferro, liberò l’acqua dai silicati fusi e fornì ai pianeti ancora non del tutto formati una prima, spessa atmosfera composta da diossido di carbonio e vapore acqueo.
Al di sotto di quella coltre di gas, i pianeti non avevano ancora una crosta solida ma una superficie di magma caldo e viscoso.
Lo studio giapponese
Qui entra in gioco uno studio del dipartimento Terra e Scienze planetarie dell’Università di Tokyo condotto da Keiko Hamano, Hidenori Genda e Yutaka Abe e pubblicato su Nature a fine maggio scorso.
Questo studio mostra come la distanza dalla loro stella possa influenzare l’evoluzione dei pianeti rocciosi.
Entro una certa distanza la radiazione stellare 3 impedirebbe la dispersione del calore in eccesso dei pianeti ancora fusi con conseguenze catastrofiche per la loro evoluzione.
L’evoluzione termica di un oceano di magma è strettamente legata alla formazione di vapore acqueo nell’atmosfera. Una massiccia presenza di vapore acqueo nell’atmosfera comporta un tremendo effetto serra che diminuisce la radiazione in uscita dal pianeta e ritarda il processo di solidificazione. A sua volta se questo flusso radiativo viene interrotto da uno stato di equilibro energetico con la radiazione stellare allora la superficie planetaria non può solidificarsi e il processo di rilascio dell’acqua sotto forma di vapore da parte del magma continua, ipersaturando l’atmosfera e svuotando il pianeta di tutta la sua acqua.
Questo processo di feedback positivo può prolungare l’opera di solidificazione del magma fino a 100 milioni di anni portando il pianeta al suo totale disseccamento.
Il resto dell’evoluzione è abbastanza chiara: l’assenza di acqua nella litosfera impedisce la formazione di zolle continentali e quindi di qualsiasi processo tettonico. La crosta planetaria diventa quindi più spessa e uniforme bloccando il flusso di calore che dal nucleo si propaga prima nel mantello e poi alla superficie.
In assenza di correnti convettive nel mantello anche la rotazione differenziale del nucleo si arresta e smette di generare un campo magnetico planetario 4. Intanto la radiazione stellare dissocia il vapore acqueo nei suoi componenti e soffia via l’idrogeno dall’atmosfera, mentre l’ossigeno si lega al monossido di carbonio trasformandosi in anidride carbonica. Così l’atmosfera del pianeta si satura di anidride carbonica 5 e l’effetto serra prima dovuto principalmente al vapore acqueo adesso è sostituito dalla quasi altrettanto efficace CO2.
Così la superficie planetaria rimane molto calda, il calore dell’interno non può quasi più defluire mentre l’atmosfera diviene sede di importanti moti convettivi dovuti all’incredibile gradiente termico tra la superficie del pianeta e lo spazio esterno.
Tutto questo è stato possibile da un iniziale stato di equilibrio energetico tra la radiazione stellare incidente e la temperatura dell’atmosfera del pianeta ancora fuso.
Nel caso in cui invece al calore sia consentito di defluire nello spazio il processo di raffreddamento procede molto più velocemente – pochi milioni di anni – consentendo al pianeta di mantenere gran parte della sua acqua nel mantello e favorendo così lo sviluppo di placche continentali. Una superficie molto più fresca consente al calore del nucleo di raggiungere la superficie attraverso moti convettivi che rimescolano il mantello e consentono al nucleo di girare indipendentemente dal resto del pianeta e generare un campo magnetico planetario. Col raffreddamento della superficie il vapore si converte in pioggia e assorbe parte dell’anidride carbonica dall’atmosfera sotto forma di acido carbonico. La riduzione dei gas serra rende l’atmosfera ancora più trasparente alla radiazione infrarossa che così disperde più energia nello spazio.
Il feedback negativo è evidente, così il pianeta si raffredda così velocemente che in pochi milioni di anni è completamente diverso dal suo gemello nato più vicino alla stella.
Conclusioni
Non c’è motivo per dubitare che gli altri sistemi planetari si siano formati in maniera dissimile al nostro, pertanto è ragionevole pensare che meccanismi simili si possano verificare anche per altri sistemi planetari.
Le supposizioni dello studio giapponese si adattano alla perfezione a quello che sembra che sia successo qui, con Venere caldo e secco e la Terra così fresca e umida.
Un meccanismo semplice, la distanza dal Sole, che si sposa perfettamente con i dati osservativi che abbiamo.
I ricercatori giapponesi suddividono così i pianeti rocciosi in due classi: il tipo I, la Terra che si è evoluta in un mondo fresco e umido, e il tipo II, caldo e secco come Venere. Il limite lo pongono a circa 0,8 U.A. dal Sole 6.
Fermo restando la suddivisione in due diverse classi di pianeti, io credo che sia meglio parlare di limite inferiore per lo sviluppo geologico di un pianeta potenzialmente abitabile. Così come esiste una Circumstellar Habitable Zone dimensionata dalla radiazione stellare, ora scopriamo che questa impone anche un limite che regola l’evoluzione geologica di un pianeta ed è un altro dettaglio importante da non trascurare nella ricerca dei pianeti potenzialmente abitabili.
Bibliografia:
- Emergence of two types of terrestrial planet on solidification of magma ocean. In: nat, vol. 497, pp. 607-610, 2013.
Note:
Note:
- Per un pianeta come la Terra o Venere si stima che l’acqua presente sia stata comunque almeno pari alla quantità totale degli oceani terrestri attuali. ↩
- Un discorso a parte meritano alcuni elementi radioattivi come il torio e l’uranio che, pur possedendo un peso atomico molto alto, sono relativamente abbondanti nella crosta terrestre per la loro affinità elettronica con gli elementi più leggeri. ↩
- In proposito consultare La Zona Circumstellare Abitabile delle altre stelle, Il Poliedrico 21 dicembre 2012. ↩
- Infatti Venere non ha un campo magnetico planetario. ↩
- Un altra capacità dell’acqua liquida è quella di sottrarre anidride carbonica dall’aria e di farla precipitare sotto forma di carbonati sul fondo degli oceani. ↩
- La distanza media di Venere dal Sole è di 0,72 U.A. . ↩
Terra (1 UA ) è il più grande e denso dei pianeti interni, l’unico in cui sono conosciute attuali attività geologiche, ed è l’unico pianeta del sistema solare che permette la vita. La sua idrosfera liquida è unica tra i pianeti interni, ed è anche l’unico pianeta dove siano state osservate placche tettoniche. L’atmosfera terrestre è estremamente differente rispetto a quella degli altri pianeti, poiché è stata alterata dalla presenza della vita e contiene il 21% di ossigeno .
È probabile che alcuni pianeti fin qui scoperti non siano molto simili ai giganti gassosi del Sistema solare, perché ricevono un quantitativo di radiazione stellare molto superiore rispetto ad essi, dal momento che presentano orbite circolari ed estremanente vicine alle proprie stelle. Corpi di questo tipo sono noti con l’appellativo di pianeti gioviani caldi (Hot Jupiters) . Potrebbero esistere, inoltre, dei pianeti gioviani caldi – indicati come pianeta ctonii – che orbitano tanto vicini alla propria stella da aver perduto la propria atmosfera, soffiata via dalla radiazione stellare. Sebbene siano stati individuati dei processi di dissoluzione dell’atmosfera su numerosi pianeti gioviani caldi, al 2009 non è stato individuato alcun pianeta che possa essere qualificato come ctonio.