D’estate alzate gli occhi al cielo; vedrete una grande croce sopra di voi dominata da una stella luminosa, Deneb. Quella è il Cigno e rappresenta un cigno mentra spicca il volo per sfuggire al Drago, lì accanto a destra.
Ecco, in quella minuscola porzione di spazio, il telescopio spaziale Kepler ci sta regalando migliaia di eccitanti scoperte. l’altro giorno fece scalpore la scoperta di Kepler10b un pianeta roccioso in orbita a una stella di tipo G, simile al nostro Sole, peccato che con 1600 gradi alla superficie questo è più simile ad un girone dell’Inferno dantesco che al Paradiso.
La porzione di cielo osservata da Kepler è circa 1/400 dell’intera volta celeste, eppure in nemmeno 2 anni dalla sua entrata in servizio, il telescopio spaziale Kepler ha rivoluzionato le nostre conoscenze del cosmo sui pianeti e la loro abbondanza.
Ora non voglio ripetere quanto già detto anche in altri siti sulla scoperta di un sistema planetario multiplo attorno ad una stella -anche questa di tipo G, chiamata Kepler-11, quanto piuttosto sulle peculiari caratteristiche dei sistemi planetari finora scoperti.
Finora sono stati scoperti i sistemi planetari con pianeti in orbita stretta alla loro stella, quindi o molto dentro rispetto all’ecosfera Goldilocks (come nel caso anche di Kepler-10 o Kepler-11) o a stelle minuscole di classe K o M, le nane rosse, dove l’influenza gravitazionale dei pianeti è abbastanza grande da influenzare visibilmente il moto della stella e dove la zona Goldilocks è a ridosso di questa proprio in virtù della scarsa energia da essa irradiata.
Tutti questi pianeti hanno una cosa in comune che non è la loro composizione o massa o dimensione: la loro distanza dalla stella del sistema.
Il metodo dei transiti richiede un certo numero di passaggi (almeno tre) per poter determinare con sufficiente sicurezza l’avvenuto transito di un pianeta attorno ad una stella. Questo serve ad escludere che la variazione di luce non sia casuale, dovuta magari a un eccezionale brillamento o a una instabilità intrinseca nella stella.
Una analisi sofisticata della curva di luce poi aiuta a determinare il transito di uno o più pianeti, ma i dati finora raccolti e analizzati coprono solo i transiti di breve periodo, quindi orbite molto più piccole rispetto a quelle che un pianeta di massa simile alla Terra dovrebbe avere se fosse dentro alla fascia Goldilocks di una stella di tipo G (un pianeta come la Terra a questa distanza dal Sole richiede circa 13 ore per attraversare il disco stellare e si ripete solo ogni anno).
Anche il tipo di segnale che un transito lascia sulla luce della stella è importante: un corpo grande molto vicino alla stella intercetta più luce dello stesso corpo posto ad una distanza molto maggiore: per rendervi conto di questo immaginate di osservare un pipistrello che vola attorno ad un lampione acceso: più questo è vicino al lampione più grande sarà la sua ombra; anche se Kepler è in grado di rivelare una variazione di 1 parte su 10.000 nella luminosità della stella, questa è una misura estremamente piccola da misurare.
Questo sistema si basa sull’oscillazione periodica della stella rispetto al baricentro gravitazionale del sistema stellare: Giove ad esempio imprime al Sole una velocità radiale di 13 m/s intorno al baricentro gravitazionale per un periodo di 12 anni, questo vuol dire che per scoprire un altro Giove alla sua stessa distanza intorno ad un’altra stella come il Sole dovremmo prendere le misure doppler della velocità radiale per un periodo di tempo molto lungo.
Le caratteristiche dei pianeti finora scoperti sono:
Dimensioni | Tipo | Quantità | % |
15 -22 rT | doppio di Giove | 19 | 1,6% |
6 – 15 rT | come Giove | 165 | 13,7% |
2 – 6 rT | come Nettuno | 662 | 55% |
1,25 -2 rT | super Terra | 288 | 23.9% |
< 1,25 rT | come Terra | 68 | 5,6% |
È solo questione di tempo, ma pianeti come la nostra Terra stanno per essere finalmente svelati.
Condividi: