Interminati mondi e infiniti quesiti

La copertina del mio libro: anche la fotografia qui è mia. Su Amazon si può leggere sia la sinossi che un breve estratto gratuito.

Ho sempre sostenuto che nell’affrontare un argomento tanto complesso non si dovrebbe mai prescindere dal raccontare anche le condizioni che lo circondano, esattamente come per lo scrivere, o il parlare, occorre conoscere il significato di ogni singola parola usata. Mi è altrettanto caro però anche un altro concetto: un libro non serve a dare esclusivamente nozioni, ma deve offrire al lettore anche qualcosa su cui riflettere e proporre di approfondire autonomamente l’argomento di cui tratta.

Per questo saggio[1] a me sono serviti quattro anni. O forse anche di più.
Sicuro che il primo embrione di quello che poi sarebbe diventato il mio primo libro — non ho affatto intenzione di fermarmi a questo, uscì proprio su questo Blog nel 2015[2], attraverso una serie di articoli sul celebre Paradosso di Fermi. Non sto a ripeterne qui la storia, l’ho spiegata in un capitolo del mio lavoro.
Ho detto quattro anni, perché ne parlai durante un pranzo con la Responsabile della Didattica e Divulgazione presso la Fondazione GAL Hassin-Centro Internazionale per le Scienze Astronomiche, Isnello (PA), (blogger di Tutti Dentro , firmatrice di diversi articoli qui ospitati, nonché mia carissima amica) Sabrina Masiero nel lontano 2016, e che poi mi ha aiutato tantissimo proprio nelle ultime revisioni alla fine dello scorso anno.

È stata una genesi lunga che alla fine mi ha portato molto lontano — e non solo da queste pagine — e fatto maturare in modi che, sinceramente, non avrei mai creduto possibile. Ho rivisto alcune mie posizioni, affrontato argomenti e campi a me del tutto sconosciuti o appena osservati da lontano.
Esplorare le innumerevoli domande insite in questo saggio è virtualmente impossibile, perché ognuna di esse apre infiniti altri quesiti che richiederebbero altrettanti trattati. Per questo ne ho scelti e affrontati soltanto qualcuno. Una scelta difficile, che mi ha portato a scrivere e abbandonare centinaia di bozze e sviluppare quelle che ho comunque ritenuto più significative.

Affrontare i temi della Vita, Intelligenza e Civiltà extraterrestri prendendo spunto unicamente dall’umana esperienza su questo mondo può sembrare scontato, ma molto spesso tale sforzo non viene  compiuto.
Duecento o quattrocento miliardi di stelle nella nostra Galassia non significa che ognuno di quei soli sia accompagnato da qualche forma di vita, anche se appena batterica. Anzi: la maggior parte delle stelle che vediamo ad occhio nudo (appena qualche migliaio) o è troppo grande oppure possiede qualche altro handicap da scontare.
Eppure tra queste centinaia di miliardi si possono ancora calcolare milioni di altre stelle che potrebbero benissimo ospitare altrettante terrificanti e pur sempre meravigliose forme di vita; queste potrebbero funzionalmente somigliare ad alcune di quelle che la Terra ha ospitato in quattro miliardi di anni, oppure no.
Come è esattamente sorta la vita sulla Terra ancora nessuno lo sa, ma ci sono buoni e ragionevoli motivi per pensare che questo sia accaduto — e che accada ancora — attorno a quei milioni di stelle che ho appena citato, e questo lo si è creduto o, perlomeno sospettato, fin dalla preistoria.
Il concetto stesso di Vita ha mutato significato nei secoli e con esso anche il modo in cui si è supposto che la Vita sarebbe potuta emergere. Dall’aristotelica abiogenesi alla sua definitiva smentita da parte di Pasteur, dal concetto fumoso di Erasmus Darwin (il nonno di Charles) fino agli esperimenti di Miller e Urey[3] che hanno spianato poi la strada alla moderna astrobiologia.
Ma quello che — almeno per me, amante da sempre del razionalismo scientifico — è apparso sempre più evidente, man mano che andavo avanti con la stesura, è stata la similitudine tra il concetto metafisico del Divino e quello dell’Universo e la sua storia che  faticosamente stiamo scoprendo nel’ultimo secolo.
Deus sive Natura, diceva più di tre secoli fa il filosofo olandese Baruch Spinoza, Dio ossia la Natura. E l’implicito che qui in parte tento di mostrare è simile: tutta la storia dell’Universo che abbiamo ricostruito ci mostra che sotto molti aspetti il Divino e la Natura possono essere concetti piuttosto simili e spesso essere perfino sovrapponibili. Col mio studio desidero soltanto offrire alcuni spunti su cui riflettere partendo da una domanda fatta per celia all’ora di pranzo dal grande fisico che fu Enrico Fermi e che è matematicamente riassunta nell’Equazione di Francis Drake.

Come ogni buon libro che si rispetti, ho chiesto a Marco Castellani, dell’Osservatorio Astronomico di Roma – INAF, blogger di Gruppo Locale e scrittore, di curare la prefazione del mio lavoro. Ne è sortita una piccola perla che merita di essere gustata per intero, perché anch’essa offre al lettore miriadi stimoli di riflessione.

Non voglio svelare di più per non rovinarvi il gusto della lettura del mio saggio, ma posso dirvi che per me è stato un viaggio meraviglioso e che spero, con l’approvazione di voi lettori, presto di rifare.

 

Cieli sereni.

50 anni dopo lo Sbarco sulla Luna non me la sento di festeggiare.

Ormai mancano poche ore al cinquantenario dello Sbarco sulla Luna. 
Quando fu scoperta la minaccia dei clorofluorocarburi all’intero ecosistema terrestre, nel 1997 tutti gli Stati della Terra fecero fronte comune e imposero il bando totale dei CFC col Trattato di Montreal; oggi, nonostante le belle parole, ancora non vedo lo stesso impegno per scongiurare le altrettanto gravi crisi ambientali. Per questo ora non riesco a gioire come vorrei lo storico anniversario.

 

L’equipaggio della missione Apollo 11: dalla sinistra: Michael Collins, Neil Armstrong e Buzz Aldrin (nato Edwin Eugene)

Checché alcuni allocchi continuino a sostenere il contrario, il 20 luglio del 1969 per la prima volta nella storia un essere umano mise davvero piede sulla Luna; tre uomini, eccetto uno che rimase in orbita, giunsero là dove nessuno era mai giunto prima.
Non sto a ripetere la storia delle missioni e dell’intero Programma Apollo, in questi giorni un po’ su tutte le testate giornalistiche, blog, TV e social non si parla di altro. Ma se da un lato questo mi conforta — finalmente si torna a parlare dell’esplorazione umana dello spazio in termini concreti — dall’altro mi spaventa pensare che dopo cinquanta anni, cinque decadi da quello storico momento, siamo riusciti ad arrivare sull’orlo di una crisi dell’intero ecosistema terrestre.
Mi spiego meglio: la stessa razza umana che cinquant’anni fa è riuscita a compiere quella fantastica impresa, oggi rischia di soccombere (no, non credo all’estinzione di tutto il genere umano ma al crollo della sua civiltà) per tutti gli errori e le opportunità che non ha saputo cogliere in quest’ultimo mezzo secolo.

Ci sono voluti ben tre lustri, dal 1973 al 1997, per far capire al mondo che i CFC (clorofluorocarburi) stavano distruggendo lo strato di ozono che protegge la vita sulla Terra da almeno 2 miliardi di anni. Il presidente della multinazionale Dupont (industria chimica che era fra i maggiori produttori di CFC nel mondo) bollò i primi studi come “spazzatura da fantascienza“; all’epoca i CFC erano usati dappertutto, dall’industria della refrigerazione (frigoriferi e climatizzatori per esempio) fino all’agricoltura, dall’elettronica alla lacca per capelli (bombolette spray). Eppure, dopo le prime conferme sul campo del 1985 che confermavano le responsabilità umane nella distruzione dello strato di ozono, si giunse al bando operativo su tutto il pianeta dei clorofluorocarburi. Oggi quel bando sta funzionando e,  checché ne dicano — o abbiano detto — i vari “mister Dupont” dell’epoca, quella fu la cosa giusta da fare.
Oggi la situazione è altrettanto pericolosamente grave: all’inizio del mese un’intero distretto in Giappone (Kagoshima, un milione di persone)[4] è stato costretto dalle piogge torrenziali ad abbandonare le proprie case; d’accordo, quando qui la gente aspetta ogni occasione per andare al mare per fare i primi bagni, in Giappone (giugno-luglio) è la stagione delle piogge, ma quell’evento era comunque decisamente fuori dell’ordinario anche per loro.
E anche in altri paesi e regioni climatologicamente distanti si stanno sperimentando fenomeni parossistici sempre più estremi e frequenti: l’eccezionale ondata di caldo che ha travolto l’Europa (45° vicino a Montpellier, in Francia) dopo un giugno insolitamente uggioso e fresco; 21° C. sopra il Circolo Polare Artico [5]; 50,6° C. in India appena il giugno scorso, quando qui era insolitamente fresco (nevicò in Corsica).

Coralli morti per effetto dell’innalzamento della temperatura e dell’acidità delle acque superficiali a Lizard Island (Australia) sulla Grande Barriera Corallina tra il marzo e il maggio 2016. Prima arriva lo sbiancamento, indice della morte dei minuscoli oranismi e poi la fioritura di alghe (a destra) completa l’opera di distruzione.
Credit: XL Catlin Seaview Survey

Questi segnali dimostrano tutta la fragilità di un sistema, quello climatico, che sta pericolosamente deviando per colpa delle attività umane: nel 2016 in Siberia si raggiunsero ben 33 gradi e nella regione dello Yamal (67° N) il disgelo estivo risvegliò un mortale batterio che era rimasto inerte da chissà quanti anni: il Bacillus anthracis, meglio noto come antrace; l’infezione uccise 2000 renne e un bambino; la più grande struttura vivente, visibile pure dallo spazio, ovvero la Grande Barriera Corallina a nord- est dell’Australia da almeno tre anni registra sbiancamenti (morte dei coralli) senza precedenti nella sua storia 1.

Eppure, ancor oggi, nonostante il parere pressoché unanime degli scienziati di tutto il mondo, miliardi di dollari spesi in conferenze e dibattiti internazionali, e una miriade di parole spese in buone intenzioni, quasi nulla è cambiato. Fior di sciocchi e stolti continuano a negare l’evidenza del Global Warming, alcuni bollandola addirittura come bufala comunista studiata dai cinesi per far svenare l’Occidente con l’acquisto di inutili auto elettriche e pannelli solari (fabbricati con le Terre Rare cinesi).
Ho già illustrato su queste pagine le prove del coinvolgimento umano nel Riscaldamento Globale, tanto che parlare di Anthropogenic Global Warming non è affatto sbagliato, anzi. Dopo quasi 25 anni nel 1997 riuscimmo come genere umano a fermare la grave minaccia all’intero ecosistema terrestre rappresentato dallo spregiudicato uso che facevamo dei CFC, mentre oggi una minaccia altrettanto grave si sta palesando ogni giorno; per questo oggi nonostante il cinquantenario dello Sbarco sulla Luna mi sento sconfortato.

Tornando al Programma Apollo che  portò L’Uomo sulla Luna, al di là di tutto ricordo che ogni onere – e merito – fu frutto dell’impegno di una sola nazione. Nell’anno dello sbarco, il costo per gli Stati Uniti d’America fu di 2.4 miliardi di dollari (PDF): appena un ottavo del costo dell’impegno militare in Vietnam di quell’anno che fu di circa 20 miliardi di dollari. In totale la spesa tra il 1961 e il 1973 fu di 26-28 miliardi di dollari dell’epoca (circa 270 miliardi di oggi) [6]. Nello stesso periodo il costo dell’intero sforzo bellico in  Indocina, per gli USA si avvicinò ai 200 miliardi, circa 2000 miliardi (a spanne) di oggi.
Ma mentre ogni dollaro investito nella ricerca spaziale comportava un ritorno di almeno cento negli anni successivi, i 200 miliardi nella guerra del Vietnam ebbero costi almeno triplicati dalla crisi economica successiva, dai costi sanitari per gli invalidi, la caduta del mercato interno e soprattutto la credibilità economica internazionale ne risentì.
Provate per un attimo ad immaginare se invece il bilancio militare mondiale dal 1970 ad oggi fosse stato dedicato alla colonizzazione dello spazio 2.
Con migliaia di miliardi investiti in ricerca e sviluppo invece che a cercare il miglior modo per farci stupide guerre per l’effimero controllo di un pezzo di terra pressoché tutti i mali che ancora affliggono l’umanità potrebbero essere ora un incubo del passato; oggi avremmo saputo come trasferire nello spazio tutte le attività più inquinanti e inaugurato una nuova era di pace e comunione per il genere umano; l’inquinamento che ogni anno causa milioni di morti — molti di più di un conflitto mondiale — sul nostro pianeta sarebbe potuto non essere più una minaccia per l’intero ecosistema terrestre e quel bambino dello Yamal avrebbe avuto l’opportunità di invecchiare magari proprio sulla Luna.

Ora noi potremmo darci tutte le pacche sulle spalle che vorremmo e raccontarci quanto fummo bravi 50 anni fa a raggiungere la Luna. ma se poi tra altrettanti anni (2069) la nostra civiltà non avrà ancora occasione di festeggiare quello che sarebbe potuto essere l’inizio di una nuova era per tutto il genere umano, sarà stata tutta colpa nostra e della nostra cieca stupidità e cupidigia.

 

La curiosa storia della curva di luce di KIC8462852, Alieni? Non credo

Immagine artistica della pulsar PSR B1257+12 con i pianeti. Credit: Wikipedia

Immagine artistica della pulsar PSR B1257+12 con i pianeti. Credit: Wikipedia

Come avevo scritto nel mese scorso e poi successivamente su un mio post sulla piattaforma di giornalismo sociale Medium.com, che peraltro vi invito a seguire, la storia di  KIC 8462852 (intanto soprannominata  Tabby’s Star (Stella di Tabby), in onore all’astronoma Tabetha Boyajian che per prima si era impegnata in questa ricerca) rappresenta un’autentica sfida per gli astronomi e gli appassionati.
Nei giorni scorsi non si sono fatti attendere i risultati della campagna di ascolto del SETI Institute, che aveva impegnato l’Allen Telescope Array per studiare la stella alla ricerca di eventuali radiosegnali extraterrestri [cite]http://goo.gl/2fhrze[/cite] emessi da un’ipotetica struttura artificiale supposta dall’astronomo Jason Wright per spiegare le anomalie nella curva di luce dell Stella di Tabby.
Dopotutto una civiltà avvastanza evoluta da considerare di costruire uno sciame di Dyson avrebbe accesso a un livello di 1×1027 watt di energia. Anche supponendo che una piccolissima frazione fosse dedicata alle trasmissioni omnidirezionali (come ad esempio dai radiofari), questi dovrebbero comunque essere rivelabili. Purtroppo l’analisi dei dati dimostrano che tra le frequenze di 1 e 10 Ghz che dal sistema della stella non proviene alcun segnale rilevabile. Questo automaticamente non può escludere a priori l’ipotesi di Wright, in fondo la struttura potrebbe essere stata abbandonata millenni fa oppure i Costruttori usano una tecnologia diversa dalle onde elettromagnetiche per comunicare o anche più semplicemente abbiamo ascoltato le frequenze sbagliate.
Ma come l’astronomo del SETI Seth Shostak ha fatto notare, “La storia dell’astronomia ci dice che ogni volta che abbiamo pensato di aver trovato un fenomeno dovuto alle attività di extraterrestri (la storia dei Little Green Man rivelatesi poi un fenomeno assolutamente naturale – le pulsar – ne è un esempio n.d.a.), ci sbagliavamo. Ma anche se è molto probabile che lo strano comportamento di questa stella sia dovuto alla natura piuttosto che agli alieni, la prudenza chiede di controllare anche queste ipotesi.

Simulazione della rapida rotazione della stella Altair ottenuta con lo strumento MIRC del C.H.A.R.A. di Mt. Wilson. qui sono evidenti gli effetti del teorema di von Ziepel sulla relazione fra gravità superficiale e flusso radiativo di una stella.

 

rotatorMa forse il comportamento della Stella di Tabby potrebbe essere ancora più banale di quanto non si sia pensato. L’idea l’ha suggerita James Galasyn sul suo blog Desdemonadespair.net e ripresa da Paul Gilster sul suo Centauri-Dreams.
L”ipotesi, a mio avviso molto interessante, si rifà ad una serie di documenti [cite]http://goo.gl/tMTRre[/cite] [cite]http://goo.gl/82ewqR[/cite] riguardo a PTFO 8-8695b, un ipotetico pianeta supposto orbitare attorno ad una stella di pre-sequenza principale particolarmente schiacciata ai poli dalla sua alta velocità di rotazione 1. Ora la conferma di questo pianeta non sembra ancora confermata ma gli studi sulle flessioni di luce indotte hanno prodotto dei risultati molto interessanti.
Quando una stella è dotata di un moto rotatorio importante (come mostra il filmato qui sopra e l’immagine qui a fianco) la stella subisce un aumento delle dimensioni in direzione del suo equatore e uno schiacciamento dei poli dovuto alla forza centrifuga.  Dal punto di vista fisico questo comporta che in prossimità dei poli la stella appaia più luminosa che all’equatore tanto più è basso il suo periodo di rotazione; questo fenomeno si chiama Oscuramento Gravitazionale.
Senza dilungarmi troppo su questo curioso fenomeno una tipica curva di luce di un transito ha la classica forma a U più o meno pronunciata dalla distanza del piano dell’osservatore rispetto al piano dell’orbita 
e più o meno profonda dovuta alle dimensioni del pianeta rispetto alla stella [cite]http://goo.gl/RDWPKB[/cite].

Geometria della precessione nel caso di una stella oblata (in rosso) con un singolo pianeta in orbita (blu).  Le frecce indicano la direzione precessione di precessione "positivo" nella matematica. In realtà la precessione è negativo, cioè, retrograda, o in senso orario come visto da sopra il polo nord stellare.

Geometria della precessione nel caso di una stella oblata (in rosso) con un singolo pianeta in orbita (blu).  Le frecce indicano la direzione precessione di precessione “positivo” nella matematica. In realtà la precessione è negativo, cioè, retrograda, o in senso orario come visto da sopra il polo nord stellare.

Ma KIC 8462852 possiede un periodo di rotazione bassissimo, appena 21 ore, sufficienti però a distorcere significativamente la forma della stella e rendere importanti gli effetti previsti dall’oscuramento gravitazionale. Noi ancora non conosciamo la direzione dell’asse di rotazione della stella e se magari possiede un pianeta in orbita abbastanza stretta e con sufficiente massa da provocare un effetto di precessione, e né se giaccia su un piano orbitale molto diverso dalla linea dell’osservatore 2. Magari la stella possiede anche un campo magnetico piuttosto inclinato rispetto al suo asse di rotazione da provocare aperiodici episodi di hotspot o di macchie stellari persistenti lungo la linea dell’osservatore. Una combinazione di questi fattori potrebbe spiegare le irregolarità e con qualche sforzo anche l’ampiezza dei picchi negativi di luminosità come quelli registrati.

Le curve di luce estrapolate da Jason Barnes e il suo gruppo per il caso PTFO 8-8695.

Le curve di luce estrapolate da Jason Barnes e il suo gruppo per il caso PTFO 8-8695.

Anche se attorno a PTFO 8-8695 non è stato – forse ancora – rivelato alcun pianeta, i metodi di indagine e di studio del prof. Barnes possono rivelarsi preziose per risolvere il mistero delle stravaganti curve di luce della Stella di Tabby.


Note:

 

Echi da un lontano passato, la storia

[latexpage]

Nel Modello Cosmologico Standard  l’universo ha avuto inizio  partendo da una singolarità di densità infinita e raggio tendente a zero. Però questa è soltanto una descrizione che deriva della versione classica della Relatività Generale. Ma non ha senso applicare la Relatività Generale a tempi inferiori al tempo di Planck 1 e a energie così alte 2 quindi ha senso chiedersi quali fossero le proprietà dell’universo solo subito dopo il tempo di Planck; quelle sono le condizioni iniziali che chiamiamo Big Bang.

big_bangL’annuncio, preceduto da diversi rumors nella giornata precedente,  è arrivato lunedì scorso, 17 marzo 2014, alle 16:00 GMT (alle 17:00 locali).
Finalmente, è stata rilevata l’impronta lasciata dalle onde gravitazionali sulla radiazione cosmica di fondo (CMB), la luce più antica del nostro Universo, impressa in tutto lo spazio quando l’Universo aveva appena 380 mila anni.
>A lungo era stata cercata questa testimonianza, finora senza risultato. Ma per poter comprendere meglio quello che è stato scoperto è meglio partire dal principio, o meglio da Edwin Hubble e Milton Humason quando nel 1929 dimostrarono che tutte le galassie si stanno allontanando l’una dall’altra indistintamente, come se lo spazio si stesse espandendo.

Come conseguenza all’espansione appena scoperta, una volta l’Universo deve essere stato più piccolo, fino ad un momento in cui tutto lo spazio e la materia erano racchiusi in un punto.
Questa era la teoria dell’atomo primigenio del gesuita Georges Edouard Lemaître,  basata sulle equazioni della relatività generale di Albert Einstein e sul lavoro di Alexander Friedmann formulata un paio di anni prima della scoperta di Hubble e Humason.
Paradossalmente a dare il nome a questa teoria poi divenuta famosa, fu uno dei più acerrimi oppositori: l’astronomo britannico Fred Hoyle, strenuo sostenitore del modello dell’‘universo stazionario, che nel ’49 chiamò l’idea di Lemaître Big Bang.

Wilson e Pensias con la loro antenna scoprirono la Radiazione Cosmica di Fondo. Per questo vinsero il Premio Nobel nel 1978.

Wilson e Penzias con la loro antenna scoprirono la Radiazione Cosmica di Fondo.
Per questo vinsero il Premio Nobel nel 1978.

Fu solo dopo il 1964 che il dibattito tra queste due teorie si risolse in favore del Big Bang. In quell’anno infatti due ingegneri che lavoravano presso i  Bell Telephone Laboratory stavano mettendo a punto un’antenna per le comunicazioni satellitari ma avevano un problema: ovunque puntassero il loro corno – era la forma dell’antenna – ricevevano un segnale di disturbo. Anche dopo che una coppia di piccioni che aveva nidificato nell’antenna fu sloggiata (qualche malizioso suggerì che ci fu un succulento arrosto a base di piccioni in quei giorni a  Holmdel Township, nel New Jersey), il disturbo rimase. Eliminati ogni difetto intrinseco nell’impianto e scartato ogni altra ipotesi di origine terrena, non rimaneva che seguire l’esempio di Karl Jansky, affidarsi all’origine extraterrestre. Solo che questo disturbo era isotropo nel cielo, non seguiva il moto siderale del pianeta. Era stata scoperta la prima luce dopo il Big Bang che permeava il cosmo, la Radiazione Cosmica di Fondo (CMB).
La più grande prova della teoria del Big Bang, la CMB, fu anche la sua maledizione: perché questa radiazione è così isotropa? C’è da aspettarsi comunque una certa disomogeneità nel cosmo in seguito a questo evento così drammatico, eppure invece no.
In ogni istante e per qualsiasi osservatore nell’Universo esiste un raggio di universo osservabile chiamato orizzonte cosmologico, che corrisponde alla distanza che la luce ha percorso dall’istante del Big Bang, in questo momento per il nostro Universo è 13,82 miliardi di anni luce (ad esempio, 10 secondi dopo alla nascita dell’Universo l’orizzonte cosmologico era di soli 3 milioni di chilometri). In pratica, l’orizzonte cosmologico cresce insieme all’età dell’Universo. Questo significa quindi che per un qualsiasi osservatore è impossibile vedere, influenzare, o essere influenzato,  oltre questo limite.

Mentre l'osservatorepuò osservare una buona parte degli orizzonti cosmologici A e B, da questi solo un piccola parte dell'altro e concesso di vedere. Credit: Il Poliedrico

Mentre l’osservatore centrale può osservare una buona parte di spazio degli orizzonti cosmologici A e B, da questi solo un piccola parte dell’altro è concesso di vedere.
Credit: Il Poliedrico

Spingendo all’estremo di questo concetto, si nota che due regioni lontane fra loro nell’universo, oltre il proprio orizzonte cosmologico, semplicemente non possono conoscere nulla delle condizioni fisiche dell’altra. Eppure l’Universo appare nel suo complesso omogeneo e isotropo, come mostra la CMB. Stesse leggi e condizioni fisiche governano regioni che non possono mai avere contatto tra loro.
Poi un altro problema affliggeva il Big Bang originale: Perché l’Universo appare piatto?
Si sapeva che l’Universo era in espansione. Questo significa ovviamente che la sua densità media cambia nel tempo. Se la densità media fosse stata anche di poco superiore di una certa densità detta critica 3, l’Universo sarebbe collassato rapidamente su sé stesso sotto il suo peso; se fosse stata appena al di sotto l’Universo si sarebbe rapidamente espanso raffreddandosi  troppo velocemente impedendo così alla materia di coagularsi in stelle.
Dopo quasi 14 miliardi di anni  invece l’Universo ci mostra strutture complesse che vanno dai superammassi di galassie agli atomi sintetizzati dalle stelle, eppure nel suo complesso è sostanzialmente omogeneo e con un rapporto $\Omega$ molto prossimo a 1.
Queste erano le domande irrisolte della teoria dell’Atomo Primordiale fino alla metà degli anni ’70, quando in Unione Sovietica David Kirzhnits e il suo allievo Andrei Linde studiando le condizioni fisiche che erano prossime al Big Bang si accorsero che le leggi fondamentali di campo – di gauge – della fisica quantistica rispondevano e potevano essere scritte allo stesso modo 4 l’interazione forte, l’interazione debole e l’elettromagnetismo -e probabilmente anche la gravità -sembravano essere un’unica forza ancestrale nata col Big Bang 5. Da allora teorie simili ne sono uscite diverse, per spiegare l’asimmetria tra materia e antimateria, la gravità quantistica, etc.
Però gli studi sovietici erano in gran parte sconosciuti in Occidente, fino a che nel 1980 Alan Guth le riscoprì e le inserì in un contesto più ampio. Ipotizzando un processo d’espansione molto rapido dell’Universo appena nato, così si risolvevano in modo elegante tutti i difetti del Big Bang fino ad allora esposti.

big bang Secondo la teoria inflazionistica di Alan Guth, appena prima dell’evento Big Bang, ma comunque in un istante successivo al Tempo di Plank ($t_p$), una regione adimensionale di falso vuoto 6 dominata da un campo scalare chiamato inflatone, decade verso uno stato di minima energia per effetto di fluttuazioni quantistiche.  Una delle peculiarità del falso vuoto è la sua densità di energia, grande e negativa. Per la Relatività Generale una densità di energia positiva crea un campo gravitazionale attrattivo. La densità di energia negativa del falso vuoto crea quindi un campo gravitazionale repulsivo, il motore del fenomeno inflattivo.
Appena $10^{-35}$ secondi dopo la transizione di fase del falso vuoto la forza gravitazionale repulsiva porta questa regione ad espandersi e a raddoppiare il suo volume ogni $10^{-34}$ secondi. Questo fenomeno iperrafredda e stira le disomogeneità indotte dalle fluttuazioni quantistiche nella fase precedente, mentre rompe la simmetria che tiene unite le forze di gauge  in condizioni estreme di densità e temperatura.  .$10^{-32}$ secondi la densità di energia diviene positiva e  la gravità assume il ruolo di forza solo attrattiva e cessa quindi l’era inflattiva del Big Bang. Quando termina l’inflazione il campo inflatone raggiunge il suo minimo potenziale e decade in radiazione che riscalda nuovamente l’Universo.
L’Universo neonato adesso ha un rapporto di densità $\Omega$ prossimo a 1 qualunque sia stato il suo valore precedente, la sua geometria ora è prettamente euclidea e può espandersi all’infinito.

Continua …


Note:

La storia infinita della Ison

 

Nelle ultime ore si sono levate voci piuttosto allarmate sulle sorti di C/23012 S1 (ISON). E anche se, al momento in cui scrivo, queste non sono state affatto né confermate o smentite, riassumo i fatti finora accertati.

La C/2012 S1 (ISON) nel campo della LASCO C3 della SOHO. Credit: ESA/NASA Solar and Heliospheric Observatory

La C/2012 S1 (ISON) nel campo della LASCO C3 della SOHO.
Credit: ESA/NASA Solar and Heliospheric Observatory

Tutto è partito il 25 novembre da una segnalazione sulla mailing list di un gruppo su Yahoo.com che si occupa di comete 1.

Il radioastronomo Michael Drahus, del Caltech / NRAO, che lavora con il radiotelescopio millimetrico Iram, a Granada in Spagna, ha riferito di un rapido calo, circa 20 volte tra il 21 e il 25, delle emissioni molecolari nella Ison. Questo calo è netto contrasto con le altre (poche) osservazioni che continuano a indicare la presenza di una chioma 2.
Intanto, anche il telescopio robotico TRAPPIST dell’ESO, in Cile, ha rilevato un calo nel tasso di produzione delle polveri di un fattore 3.
Poi pure la posizione non torna: la Ison appare essere circa 3000 chilometri  – dalla Terra sono circa 5 arcosecondi – più indietro nella sua orbita. Questo potrebbe significare che il nucleo solido si è dissolto e la pressione della radiazione solare ora frena una nube di detriti sciolti tra loro.
In più alcuni osservatori non sono riusciti a vedere la Ison la mattina del 25,  ma qui i motivi possono essere diversi, la cometa era troppo bassa all’orizzonte prima della levata del Sole, circa 10° di elevazione, e velature di nubi nell’alta atmosfera possono aver estinto la luce di questa che era prevista essere di magnitudine 2,5.

Comunque adesso la Ison è entrata nel campo visivo dei diversi strumenti dei telescopi solari Stereo A e B e della SOHO, per cui  è possibile seguirla di nuovo fino al suo perielio.
E anche qui le voci di una completa dissoluzione del nucleo non si fermano. Anche se le diverse camere a bordo degli osservatori solari mostrano ancora una cometa intera, salta subito all’occhio l’irregolarità della coda, non si sa bene se per effetto di una CME che in queste ore avrebbe sconvolto la coda di ioni 3,  oppure se è la coda di polveri generata dalla dissoluzione del nucleo che inizia a disperdersi.
D’altronde la Ison non ha mai generato grandi quantità di polveri, o almeno non quante ci se ne aspettava poco dopo la sua scoperta, come  anche i dati Afrho della cometa finora hanno confermato. Questa invece adesso potrebbe essere la pistola fumante di una dissoluzione, almeno parziale, del nucleo.

 


Note:

 

Breve storia dell’Universo

La storia dell'Universo. Credit:grandunificationtheory.com

La storia dell’Universo.
Credit:grandunificationtheory.com

Sono nato quasi 14 miliardi di anni fa, minuto più, minuto meno, nel nulla più assoluto: non c’era alcuno spazio intorno a me e nessun tempo da misurare, quelli li ho creati io.

Fu un gran bel botto ma non c’erano orecchie per sentirlo, non le avevo ancora create.
Nacqui pieno di energia, una energia ancora misteriosa che neppure il più potente acceleratore di particelle o il più massiccio quasar potrà mai ricreare.

Eppure nell’arco di appena una frazione infinitesimale di un secondo la mia energia scemò fratturandosi in quattro forze che sono l’una lo specchio dell’altra, tutte alquanto simili ma molto diverse tra loro, mentre momentaneamente mi espandevo più veloce della luce.
Subito dopo una parte della mia energia si  tramutò in materia e antimateria, che però non si sopportavano e scontrandosi si annichilivano. Ma tra le pieghe delle leggi con cui ero nato era nascosto il segreto che avrebbe permesso alla materia di uscire vittoriosa dallo scontro con l’antimateria.

Ne il primo, turbolento secondo la mia materia primordiale si raffreddò e si diluì nello spazio che via via stavo creando fino a che, dopo appena tre minuti, le mie particelle fondamentali si riunirono in particelle più complesse e in trecentomila anni in atomi.

Ora la materia increspava lo spazio curvandolo con il suo stesso  peso creando i presupposti per il mio aspetto attuale: enormi filamenti, ponti che attraversavano tutto lo spazio vuoto come il tessuto di una spugna. 

Dopo appena un miliardo di anni questi filamenti collassarono in gigantesche nubi, le protogalassie, che a loro volta si frammentarono in nubi più piccole che formarono le prime stelle.
Dai tempi in cui energia e materia erano unite tutto lo spazio risplendeva di luce blu, ma purtroppo ancora non c’erano occhi che mi potessero vedere.
Ben presto quelle magnifiche stelle blu esplosero disseminando tutto intorno a loro i semi che avrebbero costruito nuove generazioni di stelle e pianeti.

Finalmente in qualche angolo  remoto di me stesso, con quegli elementi che adesso erano parte di me, mi evolsi ancora una volta: in Vita.
Per la prima volta in 13 miliardi di anni stavo per prendere coscienza di me stesso. Avevo creato occhi per vedermi e orecchie per sentire il mio respiro. Un cervello per pensare e intelligenza per comprendermi. 

Intanto, continuo ancora ad espandermi ….

 

 

Asteroide Apophis, la storia continua

[latexpage]

Il 2012 è finito in gloria, con buona pace della Fine del Mondo e dei gonzi che ci hanno creduto insieme alle altre balle come Nibiru, le astronavi travestite da comete o da buchi nelle mappe astrali e così via. Invece in sordina …

99924 Apophis osservato da Herschel nelle tre bande di 70, 100 e 160 micron.
Credit: ESA/Herschel/PACS/MACH-11/MPE/B.Altieri (ESAC) and C. Kiss (Konkoly Observatory)

… il nuovo anno ha ben iniziato con l’incontro forse più urgente dell’anno: il passaggio al perigeo di 99942 Apophis 1.
Infatti  il 9 gennaio 2013 l’asteroide Apophis è transitato accanto alla Terra ad  appena a 14,5 milioni di chilometri.
Nell’occasione il telescopio spaziale Herschel è riuscito a stimare le dimensioni e l’albedo dell’asteroide Near-Earth con maggior precisione rispetto alle stime precedenti: così  dai 270 metri finora riconosciuti  si è passati a 325, circa il 20% in più di quanto era stato calcolato prima, mentre l’asteroide è risultato essere un po’ più scuro di quanto si fosse pensato: da un albedo di 0,33, più o meno quello della Terra, a 0,23, quello di un bel pratino.
Ovviamente Apophis non è ricoperto d’erba, non è neppure verde, ma è altrettanto scuro quanto lo è un prato verdeggiante, che non è proprio scuro quanto lo è un pezzo di carbone ma nemmeno bianco come un campo appena innevato. Più tardi vedremo perché questa può essere una informazione importante.
Intanto i nuovi dati raccolti in questo passaggio sono serviti a stimare con una maggiore precisione l’orbita dell’asteroide per gli incontri futuri che si prospettano alquanto interessanti.
Apophis orbita attorno al Sole in un po’ meno di un anno terrestre, 324 giorni, per cui non sempre è così vicino alla Terra mentre altre volte transita un po’ troppo vicino.

Il prossimo incontro ravvicinato accadrà nel 2029,  quando Apophis  sfiorerà la Terra ad appena poco più di 38.000 chilometri, abbastanza lontano da non caderci in testa ma abbastanza vicino per creare forse qualche problema ai satelliti in orbita medio-alta. Comunque, la vastità dello spazio suggerisce che il rischio che l’asteroide spazzi via qualche satellite è piuttosto bassa, la stessa agenzia spaziale americana stima che il rischio di impatto con qualche satellite operativo è piuttosto basso, circa il 2,7%.
Invece qualche motivo di preoccupazione dovremmo averlo per i passaggi successivi: anche se per il passaggio del 2036 la probabilità di un impatto si è ridotta di 30 volte, passando da 1 su 230.000 a 1 su 7 milioni, per il 2068 il rischio di un impatto aumenta, passando da 1 su 400.000 a 1 su 185.000. Le cifre dette così possono spaventare , ma il rischio che Apophis ci cada sulla testa è comunque pari allo 0,000014% per il 2036 e dello 0,0005% per il 2068; è certamente molto più rischioso viaggiare in automobile.

Nel malaugurato caso che comunque Apophis decida di scendere sulla Terra, questo non sarà altrettanto catastrofico quanto l’asteroide di Chicxulub 2 che rilasciò circa 100 milioni di megatoni di energia e provocò l’estinzione dei dinosauri 65 milioni di anni fa, ma di certo non sarà altrettanto indolore come l’Evento di Tunguska 3 del 1908.

Sulla base dei dati precedenti a questo passaggio, la NASA aveva stimato che un impatto di Apophis avrebbe generato energia per 510 megatoni, più del doppio dell’energia rilasciata dall’eruzione Krakatoa del 1883 4, un evento che mutò il clima globale della Terra per i successivi anni.
In attesa che nuove stime del potenziale distruttivo tengano conto delle nuove misurazioni dell’asteroide, si può comunque ipotizzare che questo sarà pari almeno a 850-900 megatoni, pari a circa 17-18 bombe Zar (quella depotenziata) simultanee.

Alcuni anni fa trattai l’argomento su  come deviare un asteroide su questo Blog 5. In quell’articolo illustravo alcuni metodi che la comunità scientifica ha preso in considerazione per deviare un asteroide che si avvicina troppo pericolosamente alla Terra. Ma una nuova proposta 6 è quella di ricorrere all’effetto Yarkovsky 7 per modificare l’orbita di Apophis quel tanto che basta per scongiurare altri incontri pericolosi con la Terra.
Proprio per questo l’ex astronauta americano Russel Schweickart ha proposto di inviare al più presto su Apophis un trasponder per determinarne con estrema precisione l’orbita per decidere entro il 2014 se e quanto è necessario modificare la sua orbita con una missione spaziale. Per Scweickart dopo il 2014 potrebbe non esserci abbastanza tempo per allestire una missione di deflessione prima dell’incontro del 2029. Ogni missione successiva a questa data potrebbe essere molto più difficile, sette anni potrebbero essere non più sufficienti a scongiurare un possibile impatto.

Ma di quanto è necessario modificare l’orbita di Apophis?
Sono tre i parametri di cui occorre tener conto. Il primo è quello che gli anglosassoni chiamano keyhole,  che noi possiamo immaginare come la classica cruna di un ago, in cui deve transitare il centro di massa dell’asteroide nel 2029 perché poi colpisca la Terra nel 2036. Questa finestrella è larga appena 641 metri, per cui basterebbe una deflessione di appena 320 metri.
Un altro parametro è legato all’incertezza dell’orbita, che per ora presenta uno scarto di circa 1800 chilometri sulla posizione effettiva dell’asteroide. Usando una tolleranza di sicurezza di $\sigma$ 5 significa dover apportare una deflessione di almeno 9000 km. Per questo la proposta di  Scweickart di inviare un trasponder sul corpo celeste è da prendere in considerazione assolutamente. Man mano che l’orbita di Apophis sarà conosciuta con una migliore risoluzione il grado di incertezza potrà scendere anche molto sotto ai 100 chilometri.
Il terzo parametro, per questo ho detto all’inizio che era importante conoscere l’albedo di Apophis e i dati ripresi da Herchel sono così preziosi, è invece dovuto al noto Effetto Yarkovsky, che modifica continuamente l’orbita del corpo celeste e su cui la proposta di Sung Wook Paek dovrebbe andare a incidere.

Adesso quando i fuffologi vi annunceranno una prossima fine del mondo per mano di Apophis sapete come stanno realmente le cose.


Altre letture suggerite:

Yarkovsky-driven impact risk analysis for asteroid (99942) Apophis
On the impact of the Yarkovsky effect on Apophis’ orbit

Dalla longitudine alla velocità della luce, storia dei satelliti Medicei

…il giorno 7 gennaio del corrente anno 1610.
all’una di notte , mentre osservavo gli astri
celesti con il cannocchiale, mi si presentò
Giove, e dato che mi ero allestito uno
strumento davvero eccellente, mi avvidi che gli
stavano vicino tre Stelline invero piccole , ma
assai luminose…e mi destarono una certa
meraviglia perché, per il fatto che sembravano
disposte secondo una precisa linea retta e
parallela all’Eclittica e più luminosa di altre
di pari grandezza.
(Sidereus Nuncius, Galileo Galilei)

 

Credit: Il Poliedrico

Oramai tutti noi abbiamo presente la planimetria del nostro globo, la foma dei continenti e – più o meno – dove sono le più importanti città del mondo.
Ora per ricavare le coordinate assolute in ogni punto del pianeta richede solo una manciata di secondi e un qualsiasi navigatore GPS incluso oramai anche in moltissimi telefonini.
Beh, una volta non era così. La latitudine non era un problema, bastava misurare l’altezza della Polare per stabilirla, ma fino all’avvento delle radiocomunicazioni che permettevano la trasmissione istantanea dei segnali di tempo, era un problema calcolare la longitudine di un qualsiasi luogo.
La longitudine infatti si calcola misurando in maniera più precisa possibile il tempo locale e facendo la differenza con il tempo del meridiano di riferimento (adesso Greenwich Mean Time (GMT)).
Galileo Galilei, studiando i moti dei Satelliti Medicei si accorse ben presto che questi vanno incontro a periodici transiti dietro il pianeta gigante (occultazioni) o dietro il suo cono d’ombra (eclissi), tanto  precisi  da poterli usare come un orologio celeste.
Nel frattempo una delle potenze mondiali di allora, la Spagna, aveva promesso col suo re Filippo III una ricompensa a chiunque avesse trovato un efficace rimedio al principale problema della navigazione di allora, la determinazione della longitudine, causa principale di innumerevoli sciagure e naufragi dell’epoca.
Galilei mise a punto delle effemeridi e propose il suo metodo ai reali di Spagna, ma fu bocciato dai consiglieri del re 1.
Il metodo galileiano per produrre longitudini esatte vide il successo solo dopo la morte dell’astronomo pisano, e solo sulla terraferma, dove si poteva disporre di osservatori più stabili di un cannocchiale sul ponte di una nave. Per queste vide il successo di cronometri sempre più precisi ed affidabili 2, che facevano ricorso a un altro principio fisico scoperto da Galileo Galilei: l’isocronismo del pendolo.

Nella seconda metà del seicento, Giovanni Cassini (lo scopritore della omonima divisione negli anelli di Saturno e della celebre Macchia Rossa di Giove0) e il suo assistente danese Ole Rømer all’Osservatorio di Parigi si accorsero che vi erano delle discrepanze tra i tempi previsti dei transitti dei Satelliti Medicei e la posizione di Giove e la Terra lungo le loro orbite, in particolare i transiti anticipavano quando la distanza tra i due pianeti era minima e posticipavano quando questa era massima.
Questa fu la prima conferma sperimentale che la velocità della luce è finita. Rømer la calcolò in 210.800 chilometri al secondo, un valore inferiore a quello reale di 299.792,458 km/s dettato unicamente dalla scarsa precisione degli strumenti che Rømer e Cassini avevano a disposizione.
Come amo ripetere ai miei figli non è importante un calcolo sbagliato, quanto capire il concetto e arrivare alle conclusioni giuste. Rømer lo fece.

103P/Hartley2, storia di una macchiolina verde

Doppio ammasso di Perseo: notate la macchiolina verde, magnitudine totale stimata di 10.3 [1],  lì sopra a NGC869 (quello sotto è  NGC884)? Le sue coordinate sono in ascensione retta 02 11 26.04 e declinazione +56 45 04.2 (grado più, grado meno).

Ripresa effettuata il 07/10/2010 23:22

Bene, per fotografarla non sono dovuto andare troppo lontano, ero in giardino, protetto dai lampioni al sodio dell’illuminazione stradale dalla mia casa e da alti pini dalle luci della città più vicina a nord. Praticamente vedevo solo una striscia di cielo dominata da Cassiopea.
Non ho una strumentazione astronomica, non l’ho mai avuta, nonostante la mia innata passione del cielo. Per questa fotografia ho usato una comune reflex digitale Canon EOS 1000d, non una macchina al top, ma che mi consente di interfacciarla con un comune pc portatile via USB  per le operazioni di messa a fuoco manuale e per lo scatto, su un comune, banale e poco costoso cavalletto fotografico. L’obiettivo è il Canon EF-S 55-250/4-5.6 IS, usato alla lunghezza focale di 214 mm, focale 5,6 a 1600 ISO.
La foto è stata ottenuta sommando 13 esposizioni di 3,2 secondi ciascuna  per un totale di 41,6 secondi elaborati con il programma freeware Iris.
La necessità di dover ricorrere a pose molto brevi è stata dettata soprattutto dall’uso di una montatura non motorizzata per evitare il più possibile l’effetto delle strisciate dovuto alla rotazione terrestre, u n  po’ di mosso è stato inevitabile, ma comunque lo reputo accettabile per questa ripresa.

Questa è la filosofia hacker applicata all’astrofotografia, ossia tirare fuori il massimo da pochi mezzi. L’obiettivo non è pensato per la fotografia astronomica, ma ha fatto il suo dovere, il cavalletto non motorizzato ha retto la macchina fotografica senza tentennamenti nonostante l’inquadratura fosse quasi allo zenit, e il portatile non si è scaricato sul più bello. In compenso, mi sono buscato un po’ di freddo e di umidità… ma ne è valsa la pena, che dite?

 

 

[1]  ephemeris

L’antica storia della Terra

Ho già affrontato l’enigma dell’età della Terra, adesso tocca alla sua origine, o meglio, alla sua straordinaria atmosfera.

Per la maggior parte della sua storia l’uomo ha creduto che la Terra fosse immutabile ed eterna, salvo quando accadevano i terremoti, alluvioni o le eruzioni vulcaniche che ne rimodellavano repentinamente l’aspetto. In questi casi la causa era quasi sempre attribuita alla scelleratezza umana, punita a questo modo dalle diverse divinità del pantheon di riferimento.
Per questo all’aria, invisibile e intangibile, ma sede dei più comuni e violenti fenomeni naturali come inondazioni, tempeste e anche siccità, era generalmente attribuito il regno delle divinità più potenti: Zeus, ad esempio, oltre ad essere continuamente alla ricerca di nuove amanti, era sempre arrabbiato per qualcosa, e scagliava fulmini e saette come punizione divina.
Adesso sappiamo che non è così, non crediamo più a certe superstizioni, anche se talvolta il genere umano meriterebbe qualche scappellotto per la sua immorale condotta ambientale. Non crediamo più alla teoria geocentrica e alla Terra piatta, anche se ci sono ancora sacche di resistenza di questo mito ancora oggi, come la Flat Earth Society che si propone di dimostrare la piattezza della terra con un filo a piombo e uno specchio d’acqua.
Ma esiste un’altra credenza dura a morire: l’immutabilità dell’atmosfera, o meglio della sua composizione principale: 78% di azoto e il 20% di ossigeno, più altri gas che sommati fanno il rimanente 2%. Non è sempre stato così: nell’arco dei 4,5 miliardi di anni  di vita del nostro pianeta l’atmosfera planetaria è cambiata più volte sostituendosi completamente alla precedente.

La nascita della Terra

Aria e acqua: i componenti indispensabili alla vita sulla Terra: distruggerli dovrebbe essere considerato un crimine contro l’umanità

La Terra nacque per aggregazione dei resti della nebulosa che dette origine al Sole, in una zona dove i silicati e il ferro erano una parte importante della composizione del disco protoplanetario, appena 10 milioni di anni dopo al Sole.
In quel periodo si formarono non uno, ma ben due pianeti a circa 150 milioni di chilometri di distanza l’uno dall’altro in un punto lagrangiano detto L5 del pianeta più grande, la Terra;  l’altro era un po’ più piccolo, poco meno di Marte, oggi battezzato come Theia.
La Terra (e Theia) avevano raccolto anche una parte del gas residuo della nebulosa protoplanetaria, soprattutto idrogeno ed elio. La Terra allora molto piccola, era appena la metà di oggi e non aveva quindi un’importante campo gravitazionale come oggi; sotto la pressione del vento solare del Sole appena nato (fase T Tauri) e il calore del pianeta ancora molto alto, ben presto quell’atmosfera evaporò. Questa è stata la 1a atmosfera della Terra: idrogeno ed elio.

Fase T Tauri

Appena nasce una stella, l’avvio dei processi di fusione termonucleare, genera anche un fortissimo vento stellare che spazza via in pochi milioni di anni i gas residui della protostella. Questa fase prende  il nome dal prototipo di questa classe T Tauri,. Solo dopo la stella entrerà nella sequenza principale

Le rocce fuse che componevano il pianeta emettevano grandi quantità di diossido di carbonio che rapidamente sostituirono la 1a atmosfera, ed essendo più pesante il diossido di carbonio dell’idrogeno, questo resistette un po’ di più alla dispersione causata dal vento solare che, non avendo la Terra un campo magnetico molto forte, non poteva contrastare. Questa è stata la 2a atmosfera della Terra: diossido di carbonio.

La nascita della Luna

Cortesia Harvard College Observatory

Cortesia Harvard College Observatory

Vi ricordate della gemella Theia?  Fu in quel periodo che cadde sulla Terra: la colpa  come al solito, fu di Giove, non la divinità – anche se qualche antico greco potrebbe sentirsi di attribuire a lui la causa – ma il pianeta. Con i suoi passaggi orbitali causava una leggerissima spinta ai pianeti interni e, spingi oggi e spingi domani, alla fine destabilizzò l’orbita di Theia  abbastanza da farla uscire dal punto lagrangiano e farla cadere sulla Terra. L’impatto fu devastante: il nucleo terrestre che aveva iniziato a differenziarsi durante la catastrofe del ferro, si arricchì ulteriormente del nucleo probabilmente già differenziato di Theia, formando un nucleo ferroso molto più grande ed esteso degli altri pianeti interni del sistema solare. Un nucleo così grande era capace di sprigionare un intenso campo magnetico in grado di contrastare efficacemente l’azione ionizzante e dispersiva del vento solare, ma sarebbe stato anche determinante per lo sviluppo di forme di vita superiori sulla Terra.
Circa il 2% della crosta dei due pianeti fu proiettata in  orbita e finì per formare un anello di particelle incandescenti. Adesso la Terra poteva anche lei vantare il suo anello a 20.000 – 25.000 chilometri di quota, mentre la durata del giorno passò da 8 a 5 ore e anche la seconda atmosfera appena formata (qui una simulazione) andò perduta.
Lo spettacolo degli anelli non durò a lungo: nei primi 100 anni i frammenti di crosta terrestre proiettati in orbita cominciarono a coagularsi tra loro dando origine alla Luna.Il neonato satellite generava forze di marea sulla crosta ancora fusa (1.600° centigradi) 3.400 volte più forti di quelle attuali arrivando anche a deformare la struttura interna della Terra, ma stabilizzando l’asse di rotazione di questa nei pressi dei valori odierni e rallentandone notevolmente la rotazione, un po’ come un pattinatore che piroetta allarga le braccia per fermarsi.
Anche il gigantesco nucleo fece la sua parte generando a sua volta tensioni nella parte superiore del mantello abbastanza forti da impedire la formazione di un’unica crosta solida: è l’inizio della formazione delle zolle continentali.

Le comete

Una giornata al mare nell’Adeano

Il sistema solare allora era un posto piuttosto affollato: asteroidi e comete orbitavano intorno alla nuova stella e precipitavano spesso sui pianeti più grandi appena formati. Fu così che si formò la 3a atmosfera della Terra.
La composizione chimica delle comete è nota: ghiaccio d’acqua, metano, ammoniaca e altri idrocarburi: nella sua opera di spazzino la neonata Terra si arricchì di altra materia e di acqua, la quale raffreddò la superficie fino a creare definitivamente una crosta solida e i primi oceani che, sotto l’azione dell’attrazione lunare, contribuirono ulteriormente a rallentare la rotazione terrestre finendo per portare la durata del giorno a 22 ore.
Questi impatti   cometari quindi, oltre che a creare gli oceani, portarono sulla Terra gli elementi che avrebbero prodotto una nuova atmosfera, molto più ricca e densa: metano, ammoniaca e diossido di carbonio, e forse… la Vita. A  quel tempo l’ossigeno molecolare (O2) era rarissimo: le molecole di ossigeno appena erano disponibili si legavano chimicamente con i minerali della crosta e con quelli disciolti negli oceani, che a quel tempo, per la presenza di questi, avevano una bella colorazione verde; dimenticavo: a quel tempo l’aria non era blu come oggi per colpa dell’ossigeno: era rosa per colpa del metano, che con l’azoto era il gas più importante dell’atmosfera.

La rivoluzione fotosintetica

Sviluppo della concentrazione dell’ossigeno atmosferico

Fu con lo sviluppo delle prime forme di vita unicellulari, i cianobatteri, che la composizione dell’atmosfera cambiò radicalmente per la quarta volta, avvicinandosi alla composizione attuale: queste forme di vita, avevano letteralmente ricoperto gli oceani ed emettevano una grandissima quantità di ossigeno molecolare nell’atmosfera; finché ci furono minerali (come ad esempio le rocce ricche di ferro) disponibili per l’ossidazione, i livelli dell’O2 nell’atmosfera rimasero bassi, dopo incominciarono a salire rapidamente sostituendosi al metano. Questa è la 4a atmosfera della Terra. Una premessa: a quel tempo il Sole era circa il 20% più piccolo di oggi e l’energia solare da sola non bastava a mantenere l’acqua allo stato  liquido: il metano, che è un gas serra 23 volte più efficace dell’anidride carbonica, suppliva alla mancanza di energia con un poderoso effetto serra, che però venne a mancare quando fu sostituito dall’ossigeno.
Questo provocò il rapido congelamento degli oceani fino all’equatore trasformando un pianeta ricco di vita, una vita che ne aveva ristrutturato pesantemente la composizione chimica superficiale e atmosferica,  in una enorme palla di neve di quasi 13.000 chilometri di diametro.