Pianeta X, Pianeta 9, o …

 La supposta esistenza di un nono grande pianeta nel Sistema Solare checché se ne dica non coglie del tutto di sorpresa gli astronomi. Spesso la matematica è riuscita ad anticipare importanti scoperte astronomiche. L’universo là fuori è una infinita fonte di meraviglie e di fantastiche scoperte, e di questo gli scienziati ne sono ben consapevoli. Ma questa pistola fumante, come dicono gli americani, non ha niente a che fare con la sonora bischerata di Nibiru e le stupide teorie catastrofiste che l’accompagnano. Chi ha visto in questa ipotesi una conferma delle teorie di Sitchin ha sbagliato anche stavolta 😛

Rappresentazione artistica del Pianeta Nove. Si suppone che il pianeta sia piuttosto simile ad Urano e Nettuno. Una ipotetica tempesta di fulmini illumina il lato notturno. Credit: Caltech / R. Hurt (IPAC)

Rappresentazione artistica del Pianeta Nove. Si suppone che il pianeta sia piuttosto simile ad Urano e Nettuno. Una ipotetica tempesta di fulmini illumina il lato notturno.
Credit: Caltech / R. Hurt (IPAC)

Il metodo è ormai antico e collaudato. Già nel  1846 l’astronomo tedesco Johann Gottfried Galle e al suo allievo Heinrich Louis d’Arrest scoprirono l’ottavo pianeta del Sistema Solare Nettuno 1. Questo fu il primo pianeta ad essere stato trovato tramite calcoli matematici piuttosto che attraverso regolari osservazioni: fu il trionfo della Meccanica Celeste che da Niccolò Copernico fino a Isaac Newton aveva matematicamente rivoluzionato l’universo fino ad allora conosciuto. La posizione del pianeta era stata infatti prevista dai calcoli dell’astronomo francese Urbain Le Verrier dell’Osservatorio di Parigi che era partito dall’osservazione dello strano comportamento dell’orbita di Urano che non rispecchiava esattamente il percorso in cielo previsto. A meno di grossolani errori nelle osservazioni e nei calcoli, l’unica spiegazione era che là fuori vi fosse qualcos’altro all’esterno che ne perturbava l’orbita. E infatti Nettuno fu scoperto entro appena un grado dal punto previsto.
Ma se pensate che la storia finisca qui siete in errore: infatti Nettuno non ha sufficiente massa (anche se è il terzo pianeta più massiccio del Sistema Solare) per giustificare le perturbazioni orbitali di Urano e quasi fin da subito dopo la sua scoperta divenne evidente che c’era ancora qualcosa che disturbava le orbite di entrambi i pianeti Urano e Nettuno. Partendo da quelle anomalie orbitali, agli inizi dello scorso secolo William Henry Pickering e Percival Lowell provarono a calcolare la posizione di questo misterioso Pianeta X che ancora non era stato scoperto. E anche quella volta, nel 1930, un pianeta fu scoperto quasi nello stesso posto previsto dai calcoli: Plutone, ad opera dell’astronomo dilettante (quello che oggi considereremmo un astrofilo) Clyde Tombaugh che si laureò in astronomia solo nel 1936.
Eppure, anche stavolta la massa di Plutone, che poi fu declassato a pianeta nano dall’Unione Astronomica Internazionale a pianeta nano, non era ancora sufficiente a giustificare il caos nelle orbite dei pianeti ai confini del Sistema Solare.

[youtube https://www.youtube.com/watch?v=V_Pmy331Sic&w=320]

La soluzione arrivò nel 1989, quando furono finalmente disponibili misure più accurate della massa di Nettuno e quelle della massa di Urano del sorvolo di tre anni prima della Voyager 2. Poche frazioni percentuali, ma con le nuove misurazioni dirette tutte le anomalie orbitali si risolsero [cite]http://dx.doi.org/10.1086/116575[/cite] e anche la questione di un altro pianeta molto massiccio al di là di Nettuno scomparve.

E ora veniamo al più che recente dibattito, scatenato dalla notizia apparsa sul sito del Caltech (California Institute of Tecnology) sulle prove dell’esistenza di un altro pianeta orbitante al di là di Nettuno [cite]http://www.caltech.edu/news/caltech-researchers-find-evidence-real-ninth-planet-49523[/cite].  Due ricercatori, Konstantin Batygin e Mike Brown (uno degli scopritori di Sedna) 2, hanno cercato di trovare una spiegazione sulle strane orbite possedute da alcuni corpi minori trans-nettuniani (cioè quei corpi la cui orbita si trova interamente o per la maggior parte oltre a quella di Nettuno, detti anche KBO da Kuiper Belt Object, oggetti della Fascia di Kuiper) che mostrano caratteristiche piuttosto simili [cite]http://iopscience.iop.org/article/10.3847/0004-6256/151/2/22[/cite]. L’idea in sé non è poi tanto originale, Chad Trujillo (che aveva fatto il post dottorato con Mike Brown e anche lui tra gli scopritori di Sedna)  e Scott Sheppard  astronomo presso la Carnegie Institution for Science di Washington) nel 2012 scoprirono un corpo minore, 2012 VP113, ne estrapolarono l’orbita e videro che il suo perielio era piuttosto simile a quello di un altro corpo simile, Sedna, scoperto nove anni prima. L’articolo della scoperta apparve nel 2014 su Nature [cite]http://www.nature.com/news/dwarf-planet-stretches-solar-system-s-edge-1.14921[/cite], ma non riscosse molto credito.

Le orbite di sei oggetti transnettuniani (KBO), e la possibile orbita del presunto pianeta. Tutti hanno il perielio allineato verso un punto. Credit: California Institute of Technology

Batygin e Brown invece hanno esteso quella ricerca includendo le orbite di altri corpi minori trans-nettuniani (in tutto sono 13) e si sono accorti che i sospetti originali di Trujillo e Sheppard erano più che fondati: come se ci fosse qualcosa che spingesse i corpi minori presi in esame ad avere i loro perieli tutti orientati verso un’unica direzione.
Dal punto di vista meramente statistico è assai improbabile che queste orbite si presentino così simili in modo puramente casuale. È assai più probabile che siano il prodotto di qualche evento comune (la butto là, un unico corpo di origine) oppure –  ed è la spiegazione più probabile – la presenza di un unico corpo molto più massiccio, un pianeta, che attraverso ripetuti incontri ravvicinati con i corpi minori abbia spinto questi ad avere caratteristiche orbitali al perielio molto simili. Partendo da questa conclusione, Batygin e Brown hanno provato a simulare (ripeto: simulare) le caratteristiche del pianeta che potrebbe aver allineato le orbite di quei KBO: un corpo con una massa di circa 10 volte quelle della Terra (in confronto Nettuno è circa 17 volte il nostro pianeta) e un perielio di ben 200 U.A. (circa 30 miliardi di chilometri) e un afelio compreso tra 500 e i 1200 U.A (75 e 180 miliardi di chilometri).

I sei oggetti più distanti del sistema solare conosciuti che hanno orbite esclusivamente oltre Nettuno (magenta), tra cui Sedna (magenta scuro), tutti misteriosamente si allineano in una sola direzione. Inoltre, se visto tridimensionalmente,le loro orbite inclinano verso un quasi identico punto del sistema solare. Un'altra frazione di oggetti della fascia di Kuiper (ciano) sono costretti in orbite che sono perpendicolari al piano del sistema solare e con un altro curioso orientamento. Batygin e Brown pensano che un pianeta con 10 volte la massa della Terra in una lontana orbita eccentrica (arancione) e anti-allineato con le orbite magenta e perpendicolari alle orbite ciano possa spiegare questa configurazione. Caltech / R. Hurt (IPAC)

I sei oggetti più distanti del sistema solare conosciuti che hanno orbite esclusivamente oltre Nettuno (magenta), tra cui Sedna (magenta scuro); tutti misteriosamente si allineano in una sola direzione. Inoltre, se visto tridimensionalmente, le loro orbite inclinano verso un quasi identico punto del sistema solare. Un’altra frazione di oggetti della fascia di Kuiper (in ciano) sono costretti in orbite che sono perpendicolari al piano del sistema solare e con un altro curioso orientamento. Batygin e Brown pensano che un pianeta con 10 volte la massa della Terra in una lontana orbita eccentrica (arancione) e anti-allineato con le orbite magenta e perpendicolari alle orbite ciano possa spiegare questa configurazione.
Credit: Caltech / R. Hurt (IPAC)

In più ogni teoria che si rispetti deve essere in grado non solo di spiegare come sono avvenute certe cose, ma fornire anche alcune previsioni; e in questo caso alcune di esse possono essere addirittura già verificabili, come quella di un secondo gruppo di oggetti KBO che posseggono orbite  perpendicolari rispetto all’eclittica e che finora non era stato possibile spiegare.
Il supposto Pianeta 9 molto probabilmente non è un pianeta errante poi catturato dal Sole, ma piuttosto un quinto corpo celeste formatosi insieme agli altri giganti gassosi  del Sistema Solare e poi espulso nella sua posizione attuale da Giove e Saturno ben prima che le attuali orbite si stabilizzassero.

Ora non resta che scoprirlo, anche se la scorsa campagna WISE del 2011, dopo un campionatura del 99% della volta celeste nell’infrarosso, aveva escluso la possibile esistenza di pianeti di massa come Nettuno in un raggio di ben 700 U.A. e di Giove fino a ben 26000 U.A. Il problema è che l’eventuale Pianeta 9 sarebbe ben più piccolo di Nettuno (meno di 2/3) e quindi al limite, se non al di sotto, della capacità osservativa del telescopio spaziale anche se fosse transitato in quel momento al perielio [cite]www.jpl.nasa.gov/news/news.php?release=2014-075[/cite].
Na non tutto è comunque perduto: saranno necessari i grandi telescopi come il telescopio gemello da 10 metri dell’Osservatorio Keck o il telescopio Subaru sul Mauna Kea per vederlo. Ma solo una massiccia campagna osservativa potrà confermare l’esistenza del Pianeta 9.


Note:

Blues per il Pianeta Rosso

Marte, nonostante l’immaginario collettivo, non è un buon posto per viverci noi, piccoli e fragili esseri umani, a meno di poderosi progressi tecnologici e investimenti. Per ora è molto meglio lasciare che macchine automatizzate ci mostrino il Pianeta Rosso da vicino.

Credit: HiRISE, MRO, LPL (U. Arizona), NASA

Sembrano ricami dorati in un immacolato abito da sposa.
In realtà sono camini di ghiaccio secco che si scoprono verso la fine dell’estate marziana nell’emisfero sud del pianeta quando la calotta polare sublima.
Marte, ce lo dicono tutte le missioni robotizzate che hanno raggiunto il pianeta, è bellissimo e desolato. Un unico immenso deserto rosso con due calotte di bianchissimo ghiaccio secco e ghiaccio d’acqua che si espandono e contraggono col variare delle stagioni.
La superficie marziana è composta da basalti e argille ricche di ferro: infatti, come hanno dimostrato le diverse missioni robotizzate di superficie – prime fra tutte le celebri sonde Viking I e II – il suolo marziano è chimicamente molto reattivo.
Il ferro contenuto nel terreno è fortemente ossidato, ed è appunto questa ruggine che conferisce a Marte il suo tipico colore rossastro.
Per questo tutte le ricerche in loco di forme di vita, ancorché batteriche, ha prodotto risultati negativi  o, al più, dubbiosi: il suolo ricco di ossidi e di argille non consente, per ora, di dare una risposta definitiva alla domanda che da secoli viene posta su Marte: “c’è vita o c’è mai stata?

La presenza di smectiti (un tipo di argille) nel suolo marziano fu accertato fin dalle missioni Viking 1 le quali posero seri problemi agli esperimenti biologici delle sonde proprio per la loro alta reattività chimica che falsava qualsiasi esperimento.
Adesso uno studio guidato da Catherine Weitz del Planetary Science Institute, 2 ha scoperto che all’interno di un gruppo di canyon chiamato Noctis Labyrintus ci sono segni evidenti della possibile presenza d’acqua allo stato liquido nel lontano passato di Marte, circa 2-3 miliardi di anni fa 3 4.
Questa scoperta è stata fatta utilizzando le  immagini ad alta risoluzione della fotocamera  High Resolution Imaging Science Experiment e dati spettrali della Compact Imaging Spectrometer for Mars Reconnaissance della navicella orbitale  Mars Reconnaissance Orbiter, unite ai modelli digitali del terreno marziano per  determinare elevazioni e visualizzare i rapporti geometrici tra le informazioni raccolte.
Probabilmente Marte ha avuto più episodi in cui l’acqua liquida può essere scorsa in quella regione  e aver depositato i minerali che aveva disciolto più a monte.
Nel corso del tempo può aver scavato il gruppo di canyon, differenziando i depositi per era geologica come avviene sulla Terra. Forse anche il  vulcanismo della zona di Tharsis può aver liberato acqua liquida dal sottosuolo che ha dilavato i canyon in epoche successive.
Quest’ultimo meccanismo spiega le presunte differenze di acidità (Ph) dell’acqua responsabile dei diversi depositi identificati dal team (il Ph dell’acqua modifica la composizione chimica dei depositi di cui è responsabile).

LE ERE MARZIANE

PRENOACHIANO
 Il Prenoachiano  inizia con l’accrescimento e la differenziazione del pianeta circa 4,5 miliardi di anni fa  e la formazione del bacino da impatto Hellas, tra 4,1 e 3,8 miliardi di anni fa. Quasi tutte le testimonianze di questo periodo geologico sono state cancellate dall’erosione atmosferica e da impatti meteorici nelle ere successive. 
 NOACHIANO
  Il Noachiano (dal nome della regione di Noachis Terra) è l’intervallo di tempo tra 4,1 e 3,5 miliardi di anni fa. Le regioni originatesi in questo periodo sono caratterizzate da crateri d’impatto abbondanti e di notevoli dimensioni. Si pensa che durante quel periodo su Marte sia esistita acqua allo stato liquido abbastanza da di creare mari interni.
 ESPERIANO
 L’Esperiano (dal nome dell’Hesperia Planum) si estende da 3,5 a 2 miliardi di anni fa 5, ed è caratterizzato dalla formazione di pianure laviche particolarmente estese che hanno contribuito al catastrofico rilascio di acqua dal sottosuolo che formò effimeri mari nelle pianure dell’emisfero nord.
 AMAZZONIANO
L’Amazzoniano (dal nome diAmazonis Planitia) è l’attuale era marziana che inizia con la fine dell’Esperiano. Le regioni formatesi in questo periodo sono relativamente povere di crateri, e la loro struttura è unicamente dovuta all’attività geologica. L’acqua liquida in superficie scompare e Marte diventa un freddo deserto secco.

Comunque sia, l’ipotesi che in un lontano passato Marte abbia ospitato le condizioni climatiche favorevoli per l’esistenza di acqua allo stato liquido è affascinante, perché sono le stesse condizioni di contorno richieste dalla Vita a Base Carbonio come quella sulla Terra.

Permettetemi una riflessione 6:

All’inizio Marte, dopo la sua formazione, aveva una composizione chimica dell’atmosfera molto simile agli altri due pianeti interni: Venere e Terra, cioè metano, anidride carbonica e ammoniaca.
Per tutto il Noachiano e gran parte dell’era successiva questa composizione permise a un poderoso effetto serra di mantenere la temperatura superficiale oltre il punto di congelamento dell’acqua, la quale arrivava sulla superficie attraverso il massiccio bombardamento di materiale cometario verso i pianeti interni che caratterizzò i primi 2 miliardi di anni del nostro sistema solare.
Assieme all’acqua cometaria arrivò sul Pianeta Rosso anche materiale organico precursore della Vita che trovò un ambiente favorevole per svilupparsi.
Anche qui, come sulla Terra, si svilupparono forme fotosintetiche di batteri,  i quali si resero responsabili, come sulla Terra, di una Catastrofe del’Ossigeno 7 marziana, spiegando così il terreno fortemente ossidato ancora presente.
Verso la fine  dell’Esperiano il progressivo rilascio nell’atmosfera di Marte  di ossigeno provocò la scomparsa dei gas serra che avevano garantito le relativamente alte temperature di prima. Mentre la Terra si congelò completamente con i suoi oceani, Marte vide assottigliarsi la sua atmosfera che, a causa del minor peso dell’ossigeno molecolare che aveva sostituito il metano e l’anidride carbonica, iniziò a disperdersi nello spazio grazie alla bassa velocità di fuga del pianeta, che è poco meno della metà di quella terrestre.

Credit: NASA Jet Propulsion Laboratory - California Institute of Technology

Così credo che Marte sia diventato il luogo freddo e inospitale che  è adesso. Un pianeta che ha vissuto i primi istanti della nascita della Vita Batterica e che però poi non è stata in grado di continuare il suo percorso evolutivo perché ha distrutto il fragile ecosistema del piccolo pianeta su cui era nata.
Dopo 2 miliardi e mezzo di anni non sarà facile trovare tracce di vita su Marte, dovremo accontentarci di prove indirette e supposizioni. Se esistono ancora forme di vita estremofile sarà un bel grattacapo riuscire a scovarle direttamente, a meno che la ormai prossima missione Mars Science Laboratory col suo rover Curiosity non  faccia davvero la tanto attesa scoperta.

STEREO Serendipity: scoperto pianeta gemello.

Dopo aver fornito la prima immagine completa del Sole ad alta risoluzione lo scorso 2 febbraio 2011 1, il Solar Terrestrial Relations Observatory (STEREO), lanciato nell’ottobre 2006, ha compiuto un’ulteriore importante osservazione.

Parametri orbitali

Semiasse maggiore 0,97000479 UA
Perielio 0,95021731 UA
Afelio 0,96799347 UA
Circonf. orbitale 6,03185789 UA
Periodo orbitale 365,2564985 giorni
Velocità orbitale 28,593335 km/s (media)
Eccentricità 0,01
Longitudine del
nodo ascendente
215,374°
Satelliti 0 ?
Anelli 0
Dati fisici
Diametro equat. 11862,63 km
Diametro polare 11818,09 km
Diametro medio 11840,36 km
Volume 1,007382789 × 1021
Massa
5,507663 × 1024 kg
Periodo di rotazione 28,474 ore

Il sistema STEREO è costituito da due sonde gemelle, STEREO A e STEREO B, posizionate a circa 90° di distanza dalla Terra sulla sua stessa orbita, una che precede e una che segue il pianeta, quindi a 180° l’una dall’altra per consentire una visione globale della superficie del Sole. Durante un ciclo diagnostico di taratura di uno strumento a bordo di STEREO A, la sonda è stata puntata in una regione esterna al campo di vista del Sole e ha registrato quella che all’inizio si era ritenuto un grossolano errore di manovra. Ripetendo la stessa e assicurandosi che non ci siano errori nel sistema, gli scienziati hanno avuto modo di registrare la presenza di un pianeta gemello della Terra. I dati al momento sono stati confermati dalla seconda sonda STEREO B che ha ripetuto le osservazioni inquadrando la medesima porzione di cielo.

Una simulazione al calcolatore di come del nuovo pianeta STA-1 2011 Eden. Fonte: http://planetquest.jpl.nasa.gov/planetMakeover/planetMakeover.html

Il pianeta si trova a transitare vicino alla Terra ogni 1 378 723 anni, data la minore dimensione della sua orbita rispetto alla Terra, pari a 0,96 UA. E’ rimasto nascosto dal Sole e quindi alle osservazioni da Terra per un periodo di oltre 4 000 anni. Infatti, il nuovo pianeta, battezzato STA-1 2011 Eden, si sposta rispetto alla Terra di 0, 47” in un anno. Al momento è nascosto dal Sole e sarà visibile a partire dal febbraio-marzo 2013 dato che la sua velocità orbitale è di appena 1,18 km/s più lenta rispetto a quella della Terra.
Le analisi spettrali – ancora in fase di studio – mostrano la presenza di un’atmosfera più tenue di quella terrestre e di una massa un po’ inferiore a quella della Terra, pari a 0,93 volte la massa terrestre. Non sono stati rilevati satelliti naturali attorno al pianeta.

Ulteriori informazioni saranno date appena queste saranno rese disponibili.

Umberto Genovese, Sabrina Masiero,  Marco Castellani

Missione STEREO della NASA: http://www.nasa.gov/mission_pages/stereo/main/index.html
Altro link importante a questo indirizzo.


Scoperto un Pianeta Proveniente da un’altra Galassia

Perdonatemi se non aggiungo oltre all’ottimo articolo proveniente dal sito dell’ESO, a cui vi rimando.

ESO – eso1045it -l’Articolo originale

Solo una piccola aggiunta, prima che qualcuno si immagini una stella solitaria che ha vagato tra M31 (la galassia di Andromeda) e la Via Lattea:  HIP 13.044 appartiene al flusso di Helmi [1], una popolazione di stelle che si estende attraverso la Via Lattea con orbite insolite e composizioni simili.Il flusso di Helmi è stato determinato nel 1999 e pare che abbia avuto origine in una piccola galassia, simile a quella galassia nana del Sagittario, che è stato cannibalizzata dalla Via Lattea.  L’evento di cannibalismo galattico sarebbe avvenuto tra 6 e 9 miliardi di anni fa [2].

[1] http://www.nature.com/nature/journal/v402/n6757/full/402053a0.html
[2] http://iopscience.iop.org/1538-3881/134/4/1579/

Il pianeta padre degli dei

GIOVE
Pubblico volentieri questa ricerca fatta da mio figlio (col mio aiuto, lo ammetto, ma poco poco) per la scuola; buon sangue non mente
clip_image001
Giove è il 5° pianeta del nostro Sistema Solare a partire dal Sole ed è conosciuto fin dall’antichità (i primi a studiarlo furono gli Assiri) essendo il 4° oggetto più luminoso del cielo (gli altri sono il Sole, Luna e Venere).
Per la maestosità della sua luce gli fu attribuito il nome del Padre degli Dei greco-romani: Giove.
Giove fu uno dei primi pianeti ad essere osservato al telescopio da Galilei, il quale scoprì i suoi più grandi satelliti che intitolò al granduca di Firenze Cosimo II dei Medici, ma un altro personaggio (Simon Marius) si attribuì la scoperta e li battezzò con i nomi attuali: Io, Europa, Ganimede e Callisto.
clip_image003Io è un satellite naturale di Giove, il più interno dei quattro satelliti medicei. Il suo nome deriva da quello di Io, una delle molte amanti di Zeus secondo la mitologia greca. È un satellite geologicamente attivo grazie al calore interno sviluppato dall’azione gravitazionale di Giove e, come la Terra, ospita vulcani attivi ma che a differenza di quelli terrestri emettono zolfo, conferendogli così un bel colore giallo-arancio.
clip_image004Il nome di Europa deriva da quello di Europa, un’altra delle molte amanti di Zeus. La superficie di questo satellite è composta da ghiaccio d’acqua sovrastante un unico immenso oceano d’acqua liquida grazie al calore interno del pianeta dovuto all’azione mareale di Giove come per Io. Per questo Europa sembra una grande palla da biliardo quasi perfettamente liscia.
clip_image006Ganimede è il principale satellite naturale del pianeta Giove e il più grande dell’intero sistema solare; supera per dimensioni (ma non per massa) un altro pianeta del Sistema Solare: Mercurio. Lui deve il suo nome al personaggio di Ganimede, coppiere degli dei della mitologia greca, amato da Zeus. La sua composizione dovrebbe essere di ghiaccio d’acqua e rocce nella stessa proporzione ed ha una curiosa particolarità: La superficie di Ganimede è asimmetrica; l’emisfero “anteriore”, che guarda cioè verso la direzione di avanzamento della luna sulla sua orbita, è più luminoso rispetto a quello posteriore. Lo stesso accade su Europa, mentre su Callisto accade la situazione opposta.
clip_image007Callisto è il satellite naturale più pesantemente craterizzato del sistema solare. In effetti, i crateri da impatto e i loro anelli concentrici sono la sola struttura presente su Callisto; non vi sono grandi montagne o altre caratteristiche prominenti. Questo dipende probabilmente dalla natura ghiacciata della sua superficie, dove i crateri e le montagne più grandi vengono cancellati dallo scorrimento del ghiaccio durante tempi geologici.   È il terzo satellite dell’intero Sistema Solare in virtù delle sue dimensioni, confrontabili con quelle di Mercurio. Callisto era il nome di una ninfa consacrata ad Artemide di cui Zeus si innamorò; Era scoperto il tradimento la trasformò in orsa e Artemide la uccise, ma Zeus la trasformò nella costellazione dell’Orsa Maggiore.
Con l’uso dei telescopi si è scoperto che Giove è un pianeta gassoso e che la sua massa lo rende il più grande pianeta del Sistema Solare, circa 2,5 volte la massa di tutti gli altri pianeti messi assieme.
Giove compie un’orbita (rivoluzione) intorno al Sole in 11,86 anni a una distanza media di 778 milioni di chilometri dal Sole, mentre compie una rotazione completa (giorno) in appena 9 ore e 55 minuti all’equatore e 9 ore e 50 minuti ai poli.
clip_image008Il fatto che sia gassoso fa sì che la sua rotazione sia diversa all’equatore rispetto ai poli, questo meccanismo innesca le strisce orizzontali che vediamo sulla sua superficie, che è caratterizzata anche da una gigantesca macchia bruna (la Grande Macchia Rossa) che è in realtà un gigantesco uragano che va avanti da secoli (fu osservata per la prima volta da Giovanni Cassini nel 1665) ed è sufficientemente grande da contenere due o tre pianeti delle dimensioni della Terra.
clip_image010Il pianeta è composto per almeno ¾ da gas: il 75% da idrogeno e il 24% da elio, mentre il restante 1% è suddiviso in gas più complessi come metano, ammoniaca, ossigeno, neon e zolfo e altri gas più complessi.
A causa del suo enorme peso Giove si contrae di circa 2 cm all’anno, sviluppando in questo modo quasi altrettanto calore di quanto ne riceva dal Sole.
clip_image011La sua elevata velocità di rotazione fa sì che si comporti come una enorme dinamo, originando un enorme campo magnetico che crea la magnetosfera gioviana che, come accade sulla Terra, la protegge dai raggi cosmici ma che genera delle aurore polari perenni dovute alle attività vulcaniche dei satelliti gioviani (principalmente di Io) che interagiscono con questa ed è sede di intense radioemissioni. 

clip_image013È grazie alla grande massa di Giove che il nostro Sistema Solare è abbastanza stabile fisicamente in quanto la sua orbita stabilizza quella di altri corpi minori impedendo che questi cadano verso il Sole e verso i pianeti più interni come la Terra. In questo disegno qui accanto si può osservare come Giove funga da “spazzino” e pulisca la sua orbita e organizzi quella degli asteroidi arrivando perfino a catturarne qualcuno che così diventa un altro dei suoi satelliti minori.
clip_image015
clip_image017
Giove è uno dei pianeti più a lungo studiati anche attraverso sonde automatiche inviate dall’uomo e che ci hanno permesso di apprendere di più di questo magnifico pianeta, il più grande di tutto il Sistema Solare, mentre il più importante rimane la nostra vecchia cara Terra. Nell’ordine le sonde sono state:

· missioni Pioneer 10 e 11 (1973-1974)
la sonda numero 10 è l’oggetto che finora è andato più lontano creato dall’uomo
Come la sua nave-sorella Pioneer 10, anche Pioneer 11 porta una placca dorata con dei messaggi indirizzati a una intelligenza aliena.

· missioni Voyager 1 e 2 (1979)
Voyager 1 porta con sé un disco registrato d’oro (che contiene immagini e suoni della Terra, assieme a qualche istruzione su come suonarlo, nel caso qualche civiltà extraterrestre lo trovi. È ancora in attività per studiare i confini del Sistema Solare.
Come la prima anche la Voyager 2 porta con sé il disco d’oro. È finora l’unica sonda umana che abbia studiato i pianeti Urano e Nettuno.

· missione Ulysses (1992-2004)
questa è una missione che studiava i poli del Sole e che nella sua orbita ha incontrato Giove 2 volte. Dopo il suo spegnimento avvenuto il 30 giugno del 2009, la sonda continuerà ad orbitare intorno al Sole come se fosse una cometa costruita dall’uomo.

· Missione Galileo  (1995)
Durante il viaggio verso il pianeta ha scoperto il primo satellite di un asteroide, è stata la prima sonda ad orbitare per 8 anni attorno a Giove e a lanciare una piccola sonda nella sua atmosfera per studiarne la composizione.

· missione Cassini (2000)
Sviluppata dalla NASA in collaborazione con l’ESA (l’agenzia spaziale europea) e con l’ASI (l’agenzia spaziale italiana), la sonda Cassini è un prodigio della tecnologia spaziale del XX secolo, costituita da due componenti distinte: un orbiter e una sonda secondaria (Huygens). Pensata per studiare Saturno , ha incrociato durante il viaggio anche Giove, per sfruttarne l’effetto fionda per raggiungere il pianeta degli anelli. Il robottino Huygens è poi atterrato sul satellite principale di Saturno, Titano ed è finora la più lontana sonda atterrata su un altro pianeta.

clip_image021