Risultati della ricerca per: labeled experiment

Intervista a Giorgio Bianciardi sul Labeled Release Experiment

L’8 maggio 2012 ho intervistato  il Dott. Giorgio Bianciardi – che conosco personalmente da anni – in proposito alla sua ricerca sui risultati dell’esperimento Labeled Release  (LR), come seguito del mio precedente articolo Caccia ai microrganismi marziani, le nuove ricerche sugli esperimenti Labeled Release.
Colgo l’occasione per scusarmi col dott. Bianciardi per non aver forse sottolineato abbastanza che lui è il primo firmatario della ricerca 1 e che è anche medico oltreché biologo presso l’Università di Siena e attuale vicepresidente dell’Unione Astrofili Italiani.
Ecco a voi  l’intervista, ma prima facciamo un veloce ripasso della storia della ricerca biologica delle Viking:

Il Labeled Release Experiment

L’esperimento Labeled Released (LR) fu ideato dal dott. Levin alla fine degli anni cinquanta del secolo scorso per cercare attività biologica su Marte 2 e venne scelto insieme ad altri tre esperimenti per sondare il suolo marziano alla ricerca di tracce biologiche nelle due missioni gemelle Viking giunte su Marte nel 1976.

L’esperimento LR consisteva nel prelevare alcuni campioni di suolo marziano e aggiungervi una soluzione altamente nutritiva – e molto diluita –  composta da alcuni semplici elementi organici derivati dagli esperimenti di Miller e Hurey (glicina, D-alanina e L-alanina, formato, D-lattato di sodio e L-lattato di sodio, glicolato)  a cui però il comune carbonio era stato sostituito con la versione radioattiva di questo: il carbonio 14 (14C). Eventuali microrganismi eterotrofi avrebbero assimilato le sostanze nutritive e rilasciato il 14C nell’aria. L’atmosfera sopra i campioni veniva monitorata per diversi giorni al ritmo di una rilevazione ogni 16 minuti.

Fin da subito il monitoraggio dei campioni di suolo marziano trattato con i composti nutrienti evidenziò un rilascio di 14C 3. Invece i campioni di suolo pretrattati con un riscaldamento di 160° centigradi per tre ore, il rilascio non avvenne, segno inequivocabile di una qualche attività metabolica o di qualcosa che potesse imitarne gli effetti.

Una sonda Viking – Credit: NASA

Alla fine fu convenuto da molti scienziati che si fosse trattato della seconda ipotesi, che il terreno marziano fosse ricco di perossidi 4 e che questi avessero prodotto un risposta di stampo biologico all’aggiunta dei nutrienti, mentre il riscaldamento dei campioni aveva distrutto i legami covalenti dell’ossigeno nei perossidi e quindi inibito qualsiasi risposta.
Intanto il gascromatografo di massa (CG/MS) non rilevò alcuna presenza organica nei campioni di suolo, ma solo anidride carbonica, acqua e composti del cloro (clorometano e diclorometano) che furono scambiati per residui dei solventi usati sulla Terra per pulire le celle dei due laboratori. Fu solo con la sonda Phoenix che il mistero è stato risolto 5:  la sonda scoprì che il terreno marziano è ricco di perclorati che una volta riscaldati distruggono le molecole organiche rilasciando appunto i due prodotti scoperti dal gascromatografo delle Viking.

Il dott. Levin non fu mai persuaso dalla tesi ufficiale, e per oltre un decennio studiò e ripeté l’esperimento LR con campioni di suolo diversi ottenendo risultati paragonabili a quelli su Marte 6. Altri scienziati poi nel corso di questi 36 anni hanno ipotizzato che sia i perossidi che i perclorati possono essere essenziali a una biologia sviluppata su Marte, soprattutto per la loro capacità di abbassare il punto di congelamento della – comunque scarsa – acqua marziana.

L’intervista a Giorgio Bianciardi

il dott. Giorgio Bianciardi, esobiologo e vicepresidente dellUAI

Grazie dott. Bianciardi per il tempo concesso. Partiamo proprio dall’inizio. In cosa consiste essenzialmente la tua analisi numerica e come può distinguere tra un processo di natura chimica e uno di origine biologica, e in quale ambito viene comunemente  utilizzata?

Analizzo i modelli caotici nei sistemi biologici allo scopo di evidenziare disturbi che nascondono delle patologie. Un sistema biologico ha un certo comportamento caotico riproducibile su diverse scale temporali (un minuto, un ora etc.) mentre un sistema non biologico ha una risposta diversa, più semplice. Un sistema malato avrà l’attrattore caotico 7 compromesso rispetto a un sistema biologico sano.

Quindi la tua ricerca sui dati degli esperimenti LR su Marte ha evidenziato qesta risposta caotica?

Si, i risultati dei conteggi dei marcatori di carbonio 14 emessi dai campioni di suolo marziano dopo il nutrimento con la pappa biologica mostravano il tipico andamento che ci si può aspettare da una risposta di tipo biologico.
Questo tipo di risposta era lo stesso ottenuto dalla ripetizione degli esperimenti di rilascio marcato ottenuti in laboratorio con campioni terrestri e, come era stato ottenuto su Marte con il suolo sterilizzato, anche sulla Terra i campioni sterilizzati non mostravano alcuna risposta di alcun tipo. Segno evidente che qualsiasi cosa  avesse rilasciato il carbonio 14 era andato distrutto.

Eppure il gascromatografo nelle sonde non fu in grado di rilevare alcuna materia organica e così gli altri esperimenti, e come fu detto (ed esempio dal celebre Carl Sagan) “se c’è vita, dove sono i cadaveri?”

Il gascromatografo a bordo delle Viking (esperimento CG/MS – nda) non riuscì a rivelare alcuna traccia di sostanze organiche, ma solo acqua, anidride carbonica e tracce di solventi che gli scienziati dell’epoca interpretarono come residui dei solventi usati per pulire le celle delle analisi. Fu solo nel 2008 che la sonda Phoenix scoprì che il suolo di Marte è particolarmente ricco di perclorati 8 che se riscaldati distruggono qualsiasi materia organica presente rilasciando quelle tracce di solventi che il CG/MS aveva trovato.
Inoltre il gascromatografo di massa a bordo dei lander Viking era molto poco sensibile, circa un decimilionesimo di grammo di materia organica per grammo di campione, ossia 10-7 gr, mentre l’efficienza del processo di analisi riduceva questa ad appena un decimo, diciamo che in realtà la sensibilità complessiva si riduceva a  10-6 gr per grammo. Un normale batterio terrestre pesa circa 10-12 grammi e il 90% del suo peso è acqua, mentre il resto, 10-13 gr, è materia organica. Il gascromatografo avrebbe potuto rivelare solo  oltre una soglia di 10 milioni di batteri terrestri per grammo, troppi anche per molti ambienti terrestri 9.

Quindi uno strumento matematico pensato e concepito per evidenziare attività biologica sulla Terra può funzionare anche per la vita extraterrestre?

Ripeto: una risposta biologica è sempre diversa da una risposta chimica, questa è organizzata secondo un grado di complessità diverso, come lo è ad esempio il battito cardiaco rispetto al movimento di un pendolo che si smorza col tempo.

È possibile che il tuo metodo di analisi numerica possa essere sviluppato in futuro tanto da poter essere utilizzato per scoprire attività biologica su altri mondi per esempio analizzando la curva di luce stagionale e lo spettro dell’atmosfera di un intero pianeta?

A noi non interessava trovare un metodo universale per scoprire sicuramente dell’attività biologica, anche perché probabilmente un metodo universalmente valido forse non esiste. Sono molti i sistemi naturali che seguono schemi di risposta non lineare, come accade nella rotazione assiale di un pianeta ad esempio, o nella risposta elettronica di un transistor. Quindi questo metodo non può essere utilizzato in questo senso, a noi è servito solo per dimostrare che le risposte del contatore indicavano un rilascio di radiocarbonio nell’ambiente con uno schema non riconducibile ad alcun processo fisico naturale in quel contesto, tipico però dei sistemi biologici.

Quale è stato il ruolo del dott. Miller nella ricerca?

Il dott. Levin si è speso per venti anni cercando di dimostrare al mondo che il Labeled Release aveva identificato dell’attività biologica. Nel 2000 il dott. Miller, neurofarmacologo, ha proposto a Levin  di ricominciare da capo e insieme hanno  ripetuto tutti gli esperimenti dei Viking sulla Terra, dimostrando che i risultati erano gli stessi  che su Marte. Miller scoprì tra l’altro che i risultati delle Viking mostravano una correlazione  col periodo circadiano marziano.
Poi nel 2003 Miller e Levin lessero i miei lavori indipendenti e mi contattarono per applicare le mie ricerche al complesso dei dati in loro possesso. Successivamente mi proposero di mettere il mio nome come primo ricercatore e io accettai.

Perché la vostra ricerca è stata approvata e pubblicata dalla Società Coreana per lo Spazio, piuttosto che la NASA 10 proprietaria del progetto Viking?

La ricerca è terminata l’anno scorso, ma abbiamo avuto delle difficoltà alla sua pubblicazione per i tempi molto stretti che ci eravamo prefissati, noi volevamo che la pubblicazione avvenisse prima che la sonda Mars-Curiosity sbarcasse su Marte.
Un conto è dire adesso che le Viking avevano individuato dell’attività biologica, e un altri è dirlo dopo che Curiosity avrà individuato le stesse.

E se Curiosity dimostrerà il contrario?

Allora ci saremo sbagliati, ma la posta in gioco è troppo grande per non rischiare!

(ps. a questo punto raccomando il lettore di leggere: Errata Corrige, Il Poliedrico 8 novembre 2012)


Caccia ai microrganismi marziani, le nuove ricerche sugli esperimenti Labeled Release

Gilbert V. Levin, Ph.D.

Nel lontano 1952 un brillante ingegnere sanitario inventò uno straordinario e nuovo metodo per rilevare la contaminazione microbica di acqua e cibo 1.
Nel 1958 – quando ancora andare sulla Luna era soltanto un sogno – la NASA cercava un metodo per scovare microbiche forme di vita extraterrestre.
Fu così che il metodo del dott. Levin fu scelto  – insieme ad altri – nel 1969 dalla NASA per un altisonante programma chiamato Voyager Mars che aveva lo scopo di raggiungere Marte con sonde automatiche  entro i successivi 10 anni; alla NASA pensano in grande.

Con gli anni spesso le cose cambiano nome, così il programma Voyager Mars diventò Programma Viking e il famoso metodo del dott. Levin da Gulliver 2 3 fu ribattezzato con un più prosaico  – e secondo me più brutto – “Labeled Release” (LR)  per indicare la tecnologia utilizzata.

Viking 2 Lander (2/111/976). Sullo sfondo le rocce di Utopia Planitia

In pratica l’esperimento LR nei lander Viking atterrati su Marte nel 1976 funzionava così: alcuni campioni di suolo venivano sterilizzati tramite il riscaldamento e altrettanti no. Poi a tutti questi campioni veniva aggiunto un composto nutriente contenente un isotopo particolare del carbonio facilmente rilevabile: il 14C. Qualora eventuali microrganismi marziani avessero metabolizzato il nutrimento avrebbero rilasciato una certa quantità di 14C nell’aria, mentre i campioni di suolo sterilizzati ovviamente no. In effetti la serie di esperimenti LR portati avanti nei due siti di atterraggio dei lander Viking a 4000 chilometri di distanza l’uno dall’altro produsse dei dati compatibili a una qualche attività biologica, contrariamente agli altri tre modelli sperimentali studiati per la missione 4.

Levin e la sua collaboratrice dott.sa Patricia Ann Straat, analizzarono  per almeno un decennio i dati degli esperimenti LR 5 e li ripeterono in laboratorio sulla Terra usando diversi tipi di terreno proveniente dai più disparati siti, come il suolo antartico 6. Nel 1997, dopo 21 anni dagli esprimenti marziani, altre scoperte sui batteri estremofili e nuove ipotesi sulle condizioni ambientali su Marte, dettero nuovo impulso alle ricerche del dott. Levin che pubblicò le sue conclusioni frutto di venti anni di ricerche che confermavano la scoperta delle origini biologiche dei risultati degli esperimenti LR delle sonde Viking 7.

Le valli secche nell'interno sel continente antartico sono ideali per la ricerca di microrganismi estremofili

Da allora furono fatti da altri ricercatori molti tentativi per dimostrare che i risultati degli esperimenti marziani erano frutto di semplici reazioni chimiche o fisiche tra le sostanze nutritive LR e il suolo. Nessuno tuttavia riuscì a dimostrarlo.

Il 12 aprile 2012 – quest’anno – è stato presentato un nuovo studio 8 iniziato nel 2005 che ha visto come primo firmatario il dott. Giorgio Bianciardi (biologo e medico presso l’Università di Siena, attuale vicepresidente dell’Unione Astrofili Italiani), insiema al dott. Joseph D. Miller del Dipartimento di Neurobiologia della Keck School of Medicine di Los Angeles, CA, il dott. Gilbert V. Levin dell’Arizona State University e la sua collaboratrice dott.sa Patricia Ann Straat. Questo nuovo filone di indagini sui vecchi dati degli esperimenti LR ha preso il via da una ricerca presentata nel 2003 a Madrid dal Bianciardi 9. Levin e Miller hanno fornito tutti i 16000 dati dei 9 esperimenti marziani in loro possesso (spesso ancora in forma cartacea) al Bianciardi e i dati degli esperimenti riprodotti sulla Terra. Man mano che lo studio dei dati procedeva, era evidente che tutti gli esperimenti attivi avvenuti su Marte si aggregavano perfettamente con i dati biologici fatti a Terra. I dati della temperatura si aggregavano con quelli di controllo negativi (suolo sterilizzato, su Marte o sulla Terra), ma soprattutto non c’era traccia di alcuna reazione chimica abiotica nel rilascio dell’anidride carbonica una volta che veniva aggiunta la soluzione nutritiva.
-La conclusione poteva essere solo una: c’è vita su Marte, i Viking l’avevano scoperta. – afferma il Bianciardi. Le analisi si sono concluse nel 2011 e i risultati sono stati pubblicati prima che la sonda Mars Science Laboratory (MSL) arrivasse su Marte 10.

Ma la storia è appena agli inizi ….


Ciclo biochimico del fosforo su Venere?

Sono passati diversi mesi dal mio ultimo articolo qui; diciamo pure che, dopo l’uscita del mio libro, mi sono preso un periodo sabbatico dalla scrittura più impegnata. Certo che nel frattempo, nonostante il fermo dovuto alla pandemia da Covid-19, non sono stato mai in ozio, visto che sto progettando — e costruendo — la mia personale  stazione meteorologica e della qualità del cielo. Spero che presto possa presentare qui alcuni miei risultati, ma proprio oggi una notizia piuttosto importante è stata pubblicata su Nature, e di questo sento il bisogno di dire la mia.

Immagine composita di Venere dai dati della sonda spaziale Magellan della NASA e del Pioneer Venus Orbiter. Credit: NASA / JPL-Caltech

Ipotesi sulla possibile vita microbica sugli altri pianeti del Sistema Solare si sprecano: nel lontano 1967 anche il celebre scienziato Carl Sagan si cimentò nell’immaginare vita aerea sulle sommità dei pianeti giganti gassosi e di Venere.
E nel dicembre 1999, l’astrobiologo britannico Charles S. Cockell,  ipotizzò la presenza di forme di vita chemioautotrofe sulle nubi superiori di Venere[1].

Però come è noto, la superficie di Venere è inospitale per ogni forma di vita a noi nota, anche la più estrema. 460 gradi Celsius, 92 volte la pressione atmosferica della Terra, piogge di acido solforico: niente lì potrebbe sopravvivere. Eppure, sopra questo inferno, tra i 50 e 60 chilometri dalla superficie, c’è uno strato di anidride solforosa e di acido solforico sormontato da uno strato di goccioline, sempre di acido solforico, dove la temperatura e pressione sono simili agli standard terrestri, ed è anche tutto quello che noi riusciamo a vedere di Venere. È comunque un ambiente estremamente acido, dove anche la vita più estrema scoperta sulla Terra[2] potrebbe avere serie difficoltà a sopravvivere.

Il 14 settembre 2020, su Nature, è apparsa una ricerca[3] che pare dare conferma alle tante speculazioni sulla presenza di forme di vita sulla sommità delle nubi di Venere.
Prima di scendere un po’ più in dettaglio, occorre sempre tenere ben presente che quanto finora è stato scoperto è, nel migliore delle ipotesi, una flebile traccia, poco più dell’ombra di una parziale impronta digitale sul luogo di un delitto, il che significa appena un indizio.
La ricerca della vita extraterrestre nel nostro Sistema Solare è piena di indizi: molecole organiche o i loro resti, su Marte e nelle meteoriti, i pennacchi stagionali di metano marziano, l’oceano sotterraneo di Encelado, le molecole complesse di Titano e quelle scoperte nelle comete. Potrei fare un elenco della lavandaia lungo chilometri solo per citare i casi più importanti. E anche laddove sembrava certa la scoperta di altre forme di vita, come nel caso del meteorite di origine marziana ALH84001, oppure l’esperimento Labeled Release di Gilbert Levin, montato sulle sonde Viking, il dibattito Vita/non-Vita è ancora acceso.

Fosfina su Venere

La fosfina è composta da appena 3 atomi di idrogeno legati ad un singolo atomo di fosforo ( formula bruta  PH3), formando così una struttura tetraedrica, molto simile all’ammoniaca (NH3) ma molto più reattiva. Una molecola piuttosto semplice, che si ritrova anche nel materiale interstellare attorno alle stelle  ricche di carbonio e ossigeno (quindi mediamente più vecchie) e nelle atmosfere dei pianeti giganti, dove viene prodotta continuamente dalle pressioni e temperature molto alte negli strati atmosferici profondi e poi trasportata per convezione verso l’alto[4] dove degrada. In questi luoghi la fosfina non desta particolari attenzioni, perché presentano condizioni chimico-fisiche che consentono la formazione stabile di questa molecola, mentre nei pianeti rocciosi, come Venere e Terra, le superfici e le atmosfere planetarie degradano e distruggono molto rapidamente la delicata molecola.

Sulla Terra, ad esempio, le uniche fonti importanti di fosfina, (tralasciando la produzione industriale) sono i processi di scarto prodotti dal metabolismo di batteri anaerobi che si nutrono del materiale biologico in decomposizione o dai minerali fosfati.

L’evidenza di una probabile presenza di fosfine nelle nubi di Venere fu notata nel giugno 2017 dall’astrobiologa Jane Greaves durante una osservazione dal James Clerk Maxwell Telescope. Ma tale scoperta doveva in qualche modo essere confermata: poteva essersi trattato di una svista nella taratura degli strumenti o di un falso segnale.
E nel marzo 2019, attraverso la rete interferometrica dell’Atacama Large Millimeter/submillimeter Array (ALMA) è arrivata la conferma del segnale rilevato nel 2017 dal C. Maxwell1. Sono stati usati 45 telescopi puntati su Venere per tre ore ad una lunghezza d’onda di circa 1 millimetro, ossia 2000 volte più lunga della luce visibile: solo i telescopi ad alta quota (ALMA è a 5100 metri s.l.m.) possono osservare bene nell’infrarosso dalla Terra. L’elaborazione dei dati è stata molto complessa: Alma non è stato progettato per risolvere particolari minuti su sorgenti brillanti come Venere. Tuttavia la procedura di riduzione dei dati è comunque ben documentata e rimando a quello che è stato scritto nell’articolo pubblicato su Nature.

Spettro di Venere ottenuto con ALMA. Il pannello sinistro mostra lo spettro PH3 dell’intero pianeta.  Il pannello destro mostra gli spettri delle zone polari (istogramma in nero), a media latitudine (in blu) ed equatoriale (in rosso). Gli spettri sono stati sfalsati verticalmente per chiarezza, e lo spettro polare è stato collocato in velocità per ottenere un limite superiore più profondo.

Questa scoperta apre scenari molto interessanti: nella sommità delle nubi (53-61 chilometri dal suolo venusiano), nei dintorni delle Celle di Hadley2 i ricercatori hanno scoperto le deboli tracce di fosfina in ragione di 20 ppb (parti per miliardo). Il pozzo nel diagramma qui a lato mostra la riga di assorbimento della fosfina nell’atmosfera di Venere.

Il dilemma è che su Venere di fosfina non dovrebbe essercene proprio: essa è una molecola estremamente reattiva, il famoso gas di palude che dà origine ai fuochi fatui non è altri che metano e fosfina (o fosfano, che è la stessa cosa) originati dalla decomposizione di materiale organico3. Senza una fonte costante di produzione essa non potrebbe esistere a lungo su un pianeta roccioso (sui pianeti giganti invece si forma continuamente per poi degradare). Sulla Terra, l’unica fosfina naturale esistente è prodotta durante il ciclo biologico del fosforo[5] (vedi illustrazione superiore), mentre l’atmosfera ossidativa del pianeta o i minerali della superficie degradano la molecola molto rapidamente.
A questo punto diventa arduo spiegare la presenza di molecole di fosfina nell’alta atmosfera di Venere, un ambiente iperacido e bombardato dai raggi UV del Sole.  Tutti i meccanismi naturali, ovvero fulmini atmosferici, apporto da materiale meteorico, vulcanismo, non sono in grado di giustificare  una presenza costante (ricordo che la presenza della molecola è stata osservata nel 2017 col C. Maxwell Telescope e nel 2019 con ALMA) e massiccia (20 ppb) di fosfina: ad ora nessun meccanismo abiotico noto presente sui pianeti rocciosi è in grado di farlo.

Presunta origine biotica della fosfina su Venere

Eliminate all other factors, and the one which remains must be the truth. Elimina tutti gli altri fattori e quello che rimane deve essere la verità.
Sir Artur Conan Doyle, Sherlock Holmes “The Sign of the Four”, a.D. 1890

In base alle considerazioni precedenti, l’unica strada percorribile per spiegare la presenza di fosfina sulla sommità delle nubi di Venere, resta l’origine biochimica. Ma anche questa non è una via facile da percorrere.
Innanzitutto — ammesso e non concesso — che la fosfina venusiana sia di origine biologica, occorre capire come, in un’atmosfera dinamica e acida, la vita sia riuscita a perpetuarsi ed evolversi. Sulla Terra abbiamo scoperto estremofili che riescono a prosperare in condizioni estreme come quelle presenti nelle sorgenti idrotermali del vulcano Dallol, in Etiopia e che resistono benissimo agli ultravioletti, come i cianobatteri delle stromatoliti del lago salato Salar de Llamara, nella regione di Tarapaca,  nel nord del Cile.
Innanzitutto dovremmo capire come sia possibile l’esistenza di forme di vita esclusivamente aerea. Anche la Terra ha una biosfera aerea, dove microorganismi arrivano a lambire lo spazio[6] e, anche se questa biosfera pare estendersi fino gli 85 chilometri di quota  (giusto per fare un paragone, la ISS orbita a 408 km di quota), essa perlopiù risiede sospeso dentro le goccioline d’acqua nebulari e partecipa al ciclo delle precipitazioni[7]. In pratica, sulla Terra, avviene un continuo scambio di minerali e forme di vita microbica tra il suolo e l’atmosfera, basti osservare che, senza l’apporto delle sabbie dal Sahara, le Bahamas non potrebbero esistere.
Non sappiamo se il medesimo ciclo è presente anche su Venere, ma è improbabile che, se esistesse qualche forma di vita nelle sommità delle nubi del pianeta, possa resistere alle tremende condizioni fisiche presenti al suolo. L’unica alternativa è che la vita venusiana sia limitata alla mesosfera e che sia incapace di scendere al di sotto: uno strato limite che impedisce alle forme di vita microbica e le loro spore di raggiungere gli strati sottostanti dove verrebbero distrutti. Sulla Terra la copertura nuvolosa è discontinua e dinamica; su Venere, invece, è ricoperto da ben tre distinti strati di nubi: uno strato superiore, composto da piccole goccioline di acido solforico ad una quota compresa tra i 60 e 70 km; uno strato intermedio, costituito da gocce più grandi e meno numerose, collocato a 52–59 km di altitudine; e infine uno strato inferiore più denso e costituito dalle particelle più grandi, che scende fino a 48 km di quota. Al di sotto di tale livello la temperatura è talmente elevata da vaporizzare le gocce, generando una foschia che si estende fino a 31 km di quota. Quindi è ipotizzabile che su Venere siano i diversi strati chimico-fisici dell’atmosfera a impedire che l’eventuale biosfera precipiti al suolo e che il taso di riproduzione delle forme di vita che la popolano compensi le inevitabili perdite.
Inoltre, rimangono da comprendere i meccanismi cellulari di forme di vita così estreme. Le nubi di Venere sono molto più aride e acide del più acido e secco ambiente che troviamo qui sulla Terra: nelle piscine idrotermali del Dallol è l’acido solforico ad essere disciolto nell’acqua, mentre su Venere è l’acqua ad essere disciolta nel medesimo acido. Un metabolismo di tipo terrestre non sarebbe possibile su Venere: la biochimica che conosciamo, gli acidi nucleici e le proteine, i lipidi e gli zuccheri, verrebbero distrutti istantaneamente. Nel 2004 l’astrobiologo Dirk Schulze-Makuch propose che una biochimica simile alla nostra avesse imparato ad usare lo zolfo come guscio protettivo[8] (lo zolfo non è bagnato dall’acido solforico) e la fotosintesi come fonte energetica.

Ipotetico ciclo vitale venusiano.

La copertura nuvolosa su Venere è permanente, dove gli strati medi e inferiori offrono le condizioni più simili alla Terra.

Ma rimane pur sempre il problema dell’acqua: anche nelle piscine del Dallol l’acqua è sempre presente. Nel luogo più secco della Terra, il deserto di Atacama difficilmente scende sotto il 2%. Venere è però almeno 50 volte più secco del più secco luogo disponibile sul nostro pianeta. Certo, sono noti funghi e spore che si attivano con un’umidità relativa del 0,7%, ma nelle nubi di Venere questo indice scende a 0,04%. Poi c’è il problema dei nutrienti necessari a mantenere il ciclo metabolico: una importante fonte potrebbe essere la polvere meteorica che cade incessantemente sul pianeta, ad esempio, o riciclare il carbonio e l’azoto direttamente dall’atmosfera.
Per i dettagli rimando all’articolo[9] pubblicato nell’agosto di quest’anno dall’astronoma Sara Seager “The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere” a proposito di un ipotetico ciclo biologico presente su Venere.

Un meccanismo abiotico per la fosfina su Venere

Il vulcanismo venusiano come fonte della fosfina fu scartato da Jane Greaves e gli altri perché ritenevano che l’apporto di questo meccanismo non avrebbe potuto spiegare la persistente quantità osservata (20 ppb) della molecola.
Un nuovo studio[10] (comunque ora pare ritirato) firmato dal professore di Chimica Teorica e Computazionale dell’Università dello Utah  Ngoc Truong e il fisico planetario della Cornell University Jonathan I. Lunine, propone di rivalutare il ruolo del vulcanismo basaltico di Venere: una quantità di 93 chilometri cubici di lava all’anno4 potrebbero essere sufficienti a produrre solfuri a sufficienza per spiegare l’attuale presenza di fosfina nelle nubi superiori di Venere. L’analisi si basa su una presunta ripresa dell’attività vulcanica di Venere basandosi sulla scoperta di punti caldi sulla superficie del pianeta identificati dalla sonda europea Venus Express[11].
Anche ammettendo che le molecole di fosfina si degradino meno nell’atmosfera di Venere (non ci sono radicali ossidrilici (-OH) come sulla Terra) il parossismo vulcanico di Venere pare si sia concluso tra 2 milioni e 250 mila anni fa, e che ora potrebbero essere in atto perlopiù sporadiche emissioni di anidride solforosa, la quantità di fosfina nella mesosfera di Venere rimane ancora un mistero.

Conclusioni

Su Venere potrebbe esistere un meccanismo abiotico per la produzione di fosfina ancora sconosciuto sulla Terra, oppure un composto chimico potrebbe aver imitato la medesima riga spettrale per ora attribuita alla fosfina. O forse è veramente Vita, magari una vita talmente aliena alla nostra esperienza che non potremo neppure riconoscere come tale perché la sua biochimica è del tutto diversa dalla nostra.
Solo una ricerca sul campo potrà aiutarci a capire cosa succede nelle nubi più alte di Venere.

Molecole organiche su Marte (prima parte)

Quando mi è stato concesso, ho sempre cercato di osservare le cose nel modo più ampio possibile e a cercare di stabilire dei collegamenti logici tra tutte le informazioni che mi sarebbero state utili per cercare di descriverle. Spesso è difficile star dietro al mio modo di ragionare, ma questo genere di approccio mi è sempre stato di aiuto per comprendere meglio ciò che in quel momento era alla mia attenzione. E forse anche per questo che sono sempre stato moderatamente scettico sul passato biologico marziano. È vero, ci sono stati i controversi risultati del Labeled Released Experiment [12] e sono state indicate alcune similitudini tra le microbialiti terrestri (ex. le stromatoliti) e le strutture osservate nei depositi argillosi su Marte [13], ma diciamocelo: finora non è mai stata accertata la presenza di vita ora o nel passato di Marte.
Affermare l’opposto o velatamente ammiccare alla scoperta della Vita su Marte come molti — anche autorevoli — siti e testate giornalistiche stanno facendo in queste ore è falso.

La ciclicità del metano

Andamento stagionale delle emissioni di metano nell’atmosfera di Marte in parti per miliardo correlati alla pressione atmosferica e alla posizione del pianeta nella sua orbita (longitudine solare). Le stagioni marziane sono analoghe a quelle terrestri ma molto più lunghe: un anno marziano corrisponde a 686,96 giorni terrestri. Credit: Christopher R. Webster, NASA/JPL — Edit: Il Poliedrico

Se avete seguito in questi anni questo blog, saprete senz’altro che la presenza sporadica di metano nell’atmosfera marziana era nota da anni: dal 2003 per la precisione [14]. In assenza di prove della presenza di organismi biologici per la metanogenesi (principalmente archaea) su Marte, è ovvio rivolgersi verso i meccanismi abiotici di produzione del metano [15][16], che qui sulla Terra sono responsabili di circa il 10% della produzione annua di questo gas rilasciato nell’atmosfera. Finora non erano note esattamente le cause della presenza del metano nell’atmosfera di Marte: si era creduto a una sporadicità magari derivata da un qualche impatto cometario  passato inosservato. Ma a causa dell’ambiente continuamente bombardato dalle radiazioni ultraviolette del Sole, il metano marziano rilasciato nell’atmosfera non potrebbe esistere per più di 100-300 anni, in contrasto quindi con quanto viene registrato fin dall’anno della scoperta della sua presenza (si tratta pur sempre di una manciata di molecole per miliardo vista la tenuità dell’atmosfera marziana) e soprattutto in seguito quando vennero scoperti dei rilasci altamente localizzati di metano ritenuti allora sporadici.
Per questi si era teorizzata una qualche forma di attività geotermica ancora esistente ma si sa anche che Marte ha cesaato ogni sua attività vulcanica importante da miliardi di anni. 
La scoperta della ciclicità stagionale del metano atmosferico marziano è la notizia. Questa è la conferma che l’ambiente marziano risente del cambiamento stagionale ben più di quanto finora era stato supposto. Qui i principali indiziati potrebbero essere i clarati 1 intrappolati nel sottosuolo che per effetto del mutare delle condizioni di insolazione e temperatura stagionali possono venire decomposti. l’acqua così liberata potrebbe anche avviare i processi di serpentinizzazione del basalto arricchendo così le quantità di metano rilasciato nell’atmosfera.

Questa scoperta è illustrata meglio nell’articolo di Science e nei suoi allegati che vi invito a leggere [17] nell’attesa che scriva anche la seconda parte.
Cieli sereni.

Possibili tracce di strutture biologiche fossili fotografate dai Mars Exploration Rover

Già nel lontano 2004 la missione più longeva su Marte, Opportunity, fotografò delle microsferule di ematite, soprannominate mirtilli, una delle prime prove concrete che su Marte in un tempo molto lontano deve essere esistita acqua allo stato liquido.
Poi nel corso degli anni, il quadro che disegnava Maven dall’orbita, prima Opportunity e Curiosity poi direttamente dal suolo marziano è passato da poco più che una probabilità a una  una certezza: c’era stato un momento nel passato lontano che Marte aveva posseduto dell’acqua liquida sulla sua superficie. Nel corso degli anni si sono accumulate centinaia di prove: corsi essiccati di fiumi, minerali e depositi argillosi che solo la presenza non occasionale di acqua liquida può aver generato sul Pianeta Rosso. 

Terra vs. Marte: Ecco una delle immagini presenti sul Lavoro pubblicato su IJASS, 2014. La somiglianza delle strutture evidenziate sulla Terra (microbialiti:colonie di microrganismi unicellulari) e su Marte (fotografate da Opportunity sul pianeta rosso) è davvero notevole (vedi i contorni automatici ottenuti dal sistema computerizzato, sulla destra) . La successiva analisi automatica di immagine ha confermato con alta significatività statistica l'identità delle immagini.

Terra vs. Marte:
Ecco una delle immagini presenti sul Lavoro pubblicato su IJASS, 2014. La somiglianza delle strutture evidenziate sulla Terra (microbialiti:colonie di microrganismi unicellulari) e su Marte (fotografate da Opportunity sul pianeta rosso) è davvero notevole (vedi i contorni automatici ottenuti dal sistema computerizzato, sulla destra) . La successiva analisi automatica di immagine ha confermato con alta significatività statistica l’identità delle immagini.

Nel 2004 il Mars Exploration Rover Opportunity stava esplorando il Meridiani Planum quando in un costone di roccia chiamato Guadalupe, si imbatté in una delle prime e più evidenti prove che nel lontano passato Marte aveva posseduto acqua liquida [cite]http://mars.nasa.gov/mer/newsroom/pressreleases/20040302a.html[/cite].
Non che la cosa fosse del tutto inaspettata. Già la missione orbitale Mars Odyssey aveva segnalato la presenza di grandi quantità di idrogeno che facevano supporre la presenza di ghiaccio sotto la superficie di Marte, ma non si erano ancora trovate tracce così evidenti della passata presenza di acqua liquida sulla superficie; ma non solo…

Il Dott. Giorgio Bianciardi dell’Università di Siena, biologo e medico, ricercatore dell’Università di Siena, dove insegna Microbiologia e Astrobiologia, [cite]http://ijass.org/publishedpaper/year_abstract.asp?idx=132[/cite][cite]http://ilpoliedrico.com/2012/05/intervista-a-giorgio-bianciardi-sul-labeled-release-experiment.html[/cite], il Dott. Vincenzo Rizzo ex ricercatore del CNR presso l’Istituto di Ricerca per la Protezione Idrogeologica (CNR-IRPI) di Cosenza, geologo, e il Dott. Nicola Cantasano ricercatore CNR all’istituto di Foreste e Agricoltura del Mediterraneo di Cosenza, hanno comparato 30 immagini riprese dalle missioni  Mars Exploration Rover (Spirit e Opportunity) e confrontate con altrettante (45) immagini di stromatoliti terrestri 1 per un totale di 40 000 microstrutture esaminate, tenendo conto della forma, dimensioni, complessità e similitudini tra le immagini marziane e i campioni terrestri [cite]http://ijass.org/PublishedPaper/topic_abstract.asp?idx=474[/cite].

Questa immagine mostra una parte dello sperone di roccia a Meridiani Planum, Mars, soprannominato “Guadalupe.” Fu scattata dal Microscopic Imager (MI) di Opportunity,. Credit: NASA/JPL

Il team italiano evidenzia una similitudine statistica molto elevata tra le microstrutture rilevate dalle immagini riprese su Marte e le strutture microbiologiche (microbialiti 2 e stromatoliti) terrestri.
Tutte le immagini dei campioni sono state ricomposte sulle stesse proporzioni delle immagini trasmesse dai rover (sui metodi di trattamento e i software usati rimando all’articolo originale su ijass.org) e poi si è proceduto con una analisi di tipo frattale 3 [cite]http://ilpoliedrico.com/2012/04/caccia-ai-microrganismi-marziani-le-nuove-ricerche-sugli-esperimenti-labeled-release.html[/cite] (la stessa che Giorgio Bianciardi usa da anni nelle sue ricerche biomediche) sulle immagini prendendo in considerazione otto diversi indici frattali che indicano altrettanti dati riguardo la complessità e le dimensioni delle strutture esaminate.
I risultati a cui sono giunti mostrano una totale similitudine tra le immagini marziane e i campioni terrestri sostenendo che la probabilità di una casualità simile e pari a 1 su 2^8 (p < 0,004). In altre parole i ricercatori italiani sostengono che durante il periodo in cui sussistevano le condizioni per la presenza di acqua liquida su Marte, esistevano ampie colonie di microorganismi unicellulari molto simili a quelli che hanno dato origine alle stesse simili strutture qui sulla Terra.

soprannominata "Salsberry Peak." Sono evidenti i segni della presenza dell'acqua nel passato di Marte.  Credit: NASA/JPL/Caltech/MSSS. Composizione di Jason Major.

Questo mosaico di 28 immagini è stato ripreso il Sol 844 (21/12/2014) e mostra una parte del Gale Crater soprannominata “Salsberry Peak.” Sono evidenti i segni della presenza dell’acqua nel passato di Marte.
Credit: NASA/JPL/Caltech/MSSS. Composizione di Jason Major.


Note:

 

Errata corrige

Umby

L’8 maggio 2012 ebbi l’occasione di intervistare  il Dott. Giorgio Bianciardi  sulle sue ricerche sui risultati dell’esperimento Labeled Release condotti insieme al Dott. Levin – ideatore originale dell’esperimento LR ospitato sulle celebri sonde Viking –  e il Dott. Miller.
L’intervista finale pubblicata su questo blog 
1 conteneva un errore, una svista dovuta alla mia disattenzione e alla voglia di pubblicare 2.
Quel’intervista poi fu ospitata anche sulle pagine della rivista Coelum nel numero dello scorso settembre, dove l’errore fu corretto – per mia fortuna – dallo stesso Giorgio Bianciardi che in seguito mi contattò per farmi notare che, nonostante la correttezza scientifica del finale 3 ospitato su questo sito, questo non rispecchiava  il suo pensiero e chiedendomi cortesemente di rettificare, cosa che  volentieri faccio con queste righe, ripetendo la domanda e la sua risposta:

P. E se Curiosity dimostrerà il contrario?
D.B. Troverà composti organici, li troveranno, state sicuri.

Francamente non me la sento di stravolgere quello che ho già scritto – un conto è correggere una svista e un altro  è un intervento così pesante su un articolo –  per correttezza verso i miei lettori e verso il Dott. Bianciardi che merita la necessaria visibilità al suo pensiero.
Per questo preferisco scrivere queste righe piuttosto che apportare una banale modifica o aggiunta in calce al vecchio articolo.

 


Un breve attimo di notorietà

Umby

Non sono molte le occasioni per chi come me ama parlare di scienza apparire su una rivista nazionale con un suo modesto lavoro.
Vi ricordate gli articoli sul Labeled Release Experiment 1  apparsi intorno aprile su questo Blog e poi culminati con l’intervista a Giorgio Bianciardi, ricercatore dell’Università di Siena 2?

Ebbene questa intervista – in versione quasi integrale – è stata ripresa e pubblicata (col mio consenso, si intende) su un’importante intervista astronomica nazionale, Coelum 3.
Tutto questo è per me naturalmente motivo di orgoglio, sarebbe sciocco da parte mia non ammetterlo. Ma è un risultato che devo unicamente a Voi Lettori che continuate a seguirmi e che mi sprona ancora di più nel mio modesto compito di divulgazione.