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5 Lecture 5: Solutions of Friedmann Equations

“A man gazing at the stars is proverbially at the mercy of the puddles in the road.”
Alexander Smith

The Big Picture: Last time we derived Friedmann equations — a closed set of solutions of
Einstein’s equations which relate the scale factor a(t), energy density ρ and the pressure P for flat,
open and closed Universe (as denoted by curvature constant k = 0, 1,−1). Today we are going to
solve Friedmann equations for the matter-dominated and radiation-dominated Universe and obtain
the form of the scale factor a(t). We will also estimate the age of the flat Friedmann Universe.

From the definition of the Hubble rate H in eq. (72)

H ≡ ȧ

a
=⇒ (102)

Ḣ = −H2 +
ä

a
= −H2

(

1 − ä

H2a

)

≡ −H2 (1 + q) , (103)

we define a deceleration parameter q as

q ≡ − ä

H2a
. (104)

Non-relativistic matter-dominated Universe is modeled by dust approximation: P = 0.
Then, from eq. (95), we have

ä

a
+

4πG

3
ρ = 0, (105)

and, in terms of H

−H2q +
4πG

3
ρ = 0. (106)

Therefore

ρ =
3H2

4πG
q. (107)

Then the first Friedmann equation becomes

(

ȧ

a

)2

− 8πG

3
ρ = − k

a2
,

H2 − 2H2q = − k

a2
, (108)

so
−k = a2H2(1 − 2q). (109)

Since both a 6= 0 and H 6= 0, for flat Universe (k = 0), q = 1/2 (q > 1/2 for k = 1 and q < 1/2 for
k = −1). When combined with eq. (107), this yields critical density

ρcr =
3H2

8πG
, (110)
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the density needed to yield the flat Universe. Currently, it is (see eq. (73))

ρcr =
3H2

0

8πG
=

3
(

h
0.98×1010 years

)2 (
1 year

3600×24×365 sec

)2

8π (6.67 × 10−8cm3 g−1 s−2)
= 1.87 × 10−29h2 g

cm3
≈ 10−29 g

cm3
.

(We used h ≈ 0.72 ± 0.02.)
It is important to note that the quantity q provides the relationship between the density of the

Universe ρ and the critical density ρcr (after combining eqs. (107) and (109)):

q =
ρ

2ρcr

. (111)

The second Friedmann equation (eq. (101b)) for the matter-dominated Universe becomes

ρ̇ + 3ρ
ȧ

a
= 0

a3ρ̇ + 3ρȧa2 = 0 ⇒ d

dt

(

a3ρ
)

= 0 ⇒ a3ρ = a3
0ρ0 = const. (112)

Radiation-dominated Universe is modeled by perfect fluid approximation with P = 1
3
ρ.

The second Friedmann equation (eq. (101b)) becomes

ρ̇ + 3

(

ρ +
1

3
ρ

)

ȧ

a
= ρ̇ + 4ρ

ȧ

a
= 0

a4ρ̇ + 4ρȧa3 = 0 ⇒ d

dt

(

a4ρ
)

= 0 ⇒ a4ρ = a4
0ρ0 = const. (113)

Flat Universe (k = 0, q0 =
1

2
)

Matter-dominated (dust approximation): P = 0, a3ρ = const.
The first Friedmann equation (eq. (101a)) becomes

ȧ2

a2
=

8πG

3
ρ0

(a0

a

)3

⇒ da

dt
=

√

8πGρ0a
3
0

3

1

a1/2
⇒

∫

a1/2da =
2

3
a3/2 + K =

√

8πGρ0a
3
0

3
t. (114)

At the Big Bang, t = 0, a = 0, so K = 0. Upon adopting convention a0 = 1, and the fact
that the Universe is flat ρ0 = ρcr, we finally have

a = (6πGρ0)
1/3 t2/3 = (6πGρcr)

1/3 t2/3

=

(

6πG
3H2

0

8πG

)1/3

t2/3 =

(

9H2
0

4

)1/3

t2/3 =

(

3H0

2

)2/3

t2/3. (115)

where we have used the eq. (110) in the second step. From here we compute the age of the
Universe t0, which corresponds to the Hubble rate H0 and the scale factor a = a0 = 1 to be:

t0 =
2

3H0

. (116)

Taking H0 = h
0.98×1010 years

and h ≈ 72, we get

t0 =
2 × 0.98 × 1010 years

3 × 0.72
≈ 9.1 × 109 years ≡ 9.1 A (aeon). (117)
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Radiation-dominated: P = 1
3
ρ, a4ρ = const.

The first Friedmann equation (eq. (101a)) becomes

ȧ2

a2
=

8πG

3
ρ0

(a0

a

)4

⇒ da

dt
=

√

8πGρ0a4
0

3

1

a
⇒

∫

ada = 2a2 + K =

√

8πGρ0a4
0

3
t. (118)

Again, at the Big Bang, t = 0, a = 0, so K = 0, and a0=1. Also ρ0 = ρcr. Therefore,

a =

(

2

3
πGρ0

)1/4

t1/2 =

(

2

3
πGρcr

)1/4

t1/2 =

(

2

3
πG

3H2
0

8πG

)1/4

t1/2 =

(

H0

2

)1/2

t1/2. (119)

a(
t)

t

Flat Friedmann Universe (k=0, q0=1/2)

matter-dominated
radiation-dominated

Figure 2: Evolution of the scale factor a(t) for the flat Friedmann Universe.

Closed Universe (k = 1, q0 > 1

2
)

Matter-dominated (dust approximation): P = 0, a3ρ = const.
The first Friedmann equation (eq. (101a)) becomes

ȧ2

a2
=

8πG

3
ρ0

(a0

a

)3

− 1

a2

⇒ da

dt
=

√

8πGρ0a
3
0

3a
− 1 ⇒

∫

dt =

∫

da
√

8πGρ0a3

0

3a − 1

Rewrite the integral above in terms of conformal time given in eq. (83) (dη ≡ dt
a ):

∫

dη =

∫

da
√

8πGρ0a3

0

3
a − a2

, (120)
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and define, after substituting a0 = 1 and using eqs. (107)-(109)

A ≡ 4πGρ0

3
= H2

0q0 =
q0

2q0 − 1
. (121)

Then

η − η0 =

∫ a

0

dã√
2Aã − ã2

= sin−1

(

a − A

A

)

+
1

2
π. (122)

But, the requirement η = 0 at a = 0 sets η0 = 0, so we have

a − A

A
= sin

(

η − 1

2
π

)

= − cos η ⇒ a = A(1 − cos η). (123)

Now dt = adη, so

t − t0 =

∫

adη =

∫

A(1 − cos η)dη = A

∫

(1 − cos η) dη = A(η − sin η). (124)

But, the requirement η = 0 at t = 0 sets t0 = 0. Therefore, we finally have the dependence
of the scale factor a in terms of the time t parametrized by the conformal time η as:

a =
q0

2q0 − 1
(1 − cos η), (125)

t =
q0

2q0 − 1
(η − sin η).

Radiation-dominated: P = 1
3
ρ, a4ρ = const.

The first Friedmann equation (eq. (101a)) becomes

ȧ2

a2
=

8πG

3
ρ0

(a0

a

)4

− 1

a2

⇒ da

dt
=

√

8πGρ0a
4
0

3a2
− 1 ⇒

∫

dt =

∫

da
√

8πGρ0a3

0

3a2 − 1

Again, rewrite the integral above in terms of conformal time and quantity A1 = 8πGρ0

3
= 2q0

2q0−1
:

η − η0 =

∫ a

0

dã√
A1 − ã2

= sin−1

(

a√
A1

)

. (126)

Again, the requirement η = 0 at a = 0 sets η0 = 0, so we have

a =
√

A1 sin (η) , (127)

and
t − t0 =

√

A1 cos (η) , (128)

The requirement η = 0 at t = 0 sets t0 =
√

A1, so we finally have

a =

√

2q0

2q0 − 1
sin η, (129)

t =

√

2q0

2q0 − 1
(1 − cos η) .
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Closed Friedmann Universe (k=1, q0>1/2)

Big CrunchBig Crunch
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radiation-dominated

Figure 3: Evolution of the scale factor a(t) for the closed Friedmann Universe.

In both matter- and radiation-dominated closed Universes, the evolution is cycloidal — the scale
factor grows at an ever-decreasing rate until it reaches a point at which the expansion is halted and
reversed. The Universe then starts to compress and it finally collapses in the Big Crunch.

Open Universe (k = −1, q0 < 1

2
)

Matter-dominated (dust approximation): P = 0, a3ρ = const.
The first Friedmann equation (eq. (101a)) becomes

ȧ2

a2
=

8πG

3
ρ0

(a0

a

)3

+
1

a2

⇒ da

dt
=

√

8πGρ0a
3
0

3a
+ 1 ⇒

∫

dt =

∫

da
√

8πGρ0a3

0

3a + 1

Again, rewrite the integral above in terms of conformal time:
∫

dη =

∫

da
√

8πGρ0a3

0

3
a + a2

, (130)

take a0 = 1, and define Ã ≡ 4πGρ0

3
= q0

2q0−1
. Then

η − η0 =

∫ a

0

dã
√

2Ãã + ã2
= ln





a + Ã +
√

a(2Ã + a)

Ã



 = ln





a

Ã
+ 1 +

√

2
a

Ã
+

(

a

Ã

)2





= cosh−1

(

a

Ã
+ 1

)

. (131)

But, the requirement η = 0 at a = 0 sets η0 = 0, so we have

a + Ã

Ã
= cosh η ⇒ a = Ã(cosh η − 1). (132)
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Now dt = adη, so

t − t0 =

∫

adη =

∫

Ã(cosh η − 1)dη = Ã

∫

(cosh η − 1) dη = Ã(sinh η − η). (133)

But, the requirement η = 0 at t = 0 sets t0 = 0. Therefore, we finally have the dependence
of the scale factor a in terms of the time t parametrized by the conformal time η as:

a =
q0

2q0 − 1
(cosh η − 1), (134)

t =
q0

2q0 − 1
(sinh η − η).

Radiation-dominated: P = 1
3
ρ, a4ρ = const.

The first Friedmann equation (eq. (101a)) becomes

ȧ2

a2
=

8πG

3
ρ0

(a0

a

)4

+
1

a2

⇒ da

dt
=

√

8πGρ0a4
0

3a2
+ 1 ⇒

∫

dt =

∫

da
√

8πGρ0a3

0

3a2 + 1

Again, rewrite the integral above in terms of conformal time and quantity Ã1 ≡ 8πGρ0

3
= 2q0

2q0−1
:

η − η0 =

∫ a

0

dã
√

Ã1 + ã2
= sinh−1

(

a
√

Ã1

)

(135)

Again, the requirement η = 0 at a = 0 sets η0 = 0, so we have

a =

√

Ã1 sinh η, (136)

t − t0 =

√

Ã1 cosh η, (137)

The requirement η = 0 at t = 0 sets t0 =
√

Ã1, so we finally have

a =

√

2q0

1 − 2q0

sinh η, (138)

t =

√

2q0

1 − 2q0

(cosh η − 1) .

Early times (small η limit): For small values of η, the trigonometric and hyperbolic functions
can be expanded in Taylor series (keeping only first two terms):

sin η = η − 1

6
η3, cos η = 1 − 1

2
η2,

sinh η = η +
1

6
η3, cosh η = 1 +

1

2
η2,

so, to the leading term, the a and t dependence on η for the different curvatures is shown in the
table below:

Moral: at early times, the curvature of the Universe does not matter — singular behavior at
early times is essentially independent of the curvature of the Universe (k). Big Bang — “matter-
dominated singularity”.
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Open Friedmann Universe (k=-1, q0<1/2)

matter-dominated
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Figure 4: Evolution of the scale factor a(t) for the open Friedmann Universe.

a(
t)

t

Matter-Dominated Friedmann Universes

closed

open

flat

Big CrunchBig Bang

Figure 5: Evolution of the scale factor a(t) for the flat, closed and open matter-dominated Friedmann
Universes.

Table 2: Scale factor a(t) for flat, closed and open Friedmann Universes, along with their asymptotic
behavior at early times.
curvature For all η For small η

k a t a t a(t)

0 (6πGρ0)
1/3 t2/3 - ∝ t2/3 - ∝ t2/3

1 q0

2q0−1
(1 − cos η) q0

2q0−1
(η − sin η) ∝ η2 ∝ η3 ∝ t2/3

-1 q0

1−2q0
(cosh η − 1) q0

1−2q0
(sinh η − η) ∝ η2 ∝ η3 ∝ t2/3
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