VLTI (Gravity) registra la prima atmosfera extrasolare

HR8799. Una stella distante 129 anni luce, è la prima ad ospitare un pianeta di cui si sia osservata direttamente l’atmosfera!

Sono passati appena 40 anni da quando fu accertata l’esistenza dei pianeti attorno alle altre stelle; non che vi fossero dubbi al riguardo ma si riteneva che dimostrarne l’esistenza e perfino scrutarne qualcuno — come poi è stato fatto — fosse impossibile. E invece … eccoci qua!
Sfruttando l’ eccezionale apertura interferometrica di ben 100 metri (vedi nota a piè di pagina), gli astronomi sono riusciti a ricavare lo spettro dell’atmosfera di HR 8799 e, uno dei quattro pianeti di una stella molto giovane — appena una trentina di milioni di anni — di classe F0, distante appena 129 anni luce [1]. Il corpo celeste è un gioviano caldo, con una massa superiore di circa 10 volte quella di Giove ed è altrettanto giovane quanto la sua stella. Questa è una fortuna, perché permetterà in seguito di studiare nel dettaglio la sua evoluzione.
Comunque intanto sono stati raggiunti, e superati, diversi traguardi: il primo, e sicuramente il più importante, riguarda la capacità tecnologica di riuscire ad osservare finalmente l’atmosfera di un esopianeta, ossia di un mondo che non appartiene al nostro sistema solare; il secondo è che quell’atmosfera non è esattamente come i modelli standard delle atmosfere planetarie descrivono. E questo spingerà senz’altro gli astronomi a cercare e studiare altre esoatmosfere per cercare di comprenderne meglio i meccanismi. Intanto vi invito a consultare i link a fine articolo per vedere i risultati scientifici.
Questo è il link al comunicato ufficiale dell’ESO

[video_lightbox_youtube video_id=”uqdFCKSOJiY&rel=false” auto_thumb=”1″ width=”800″ height=”450″ auto_thumb=”1″]

 

Note:

 

Schizzo della disposizione dell’interferometro del VLT. La luce da un oggetto celeste distante entra in due dei telescopi del VLT e viene riflessa dai vari specchi nel tunnel interferometrico, al di sotto della piattaforma di osservazione sulla cima del Paranal. Due linee di ritardo con carrelli mobili correggono in continuazione la lunghezza dei cammini in modo che i due fasci interferiscano costruttivamente e producano frange di interferenza nel fuoco interferometrico in laboratorio.

L’Interferometria viene usata da decenni nel campo delle onde radio, dove si possono ottenere immagini con strumenti virtuali pari quasi al diametro terrestre, Il principio di funzionamento di un apparato interferometrico si basa sulla sovrapposizione in fase di due o più segnali coerenti allo scopo di esaltarne il segnale; per ottenere questo effetto però la differenza tra i cammini ottici dei fasci stessi deve rimanere inferiore ad un decimo della loro lunghezza ottica. Ora, nella radioastronomia il margine è piccolo ma comunque ottenibile senza grosse difficoltà: a 21 cm di lunghezza d’onda — ossia quella dell’idrogeno interstellare — la tolleranza è di appena 2 cm; anche se questa è misurata su basi lunghe migliaia di chilometri (Very-Long-Baseline Interferometry). Ma ricorrendo a trucchi che prevedono l’uso combinato di orologi atomici locali e maser all’idrogeno, l’ostacolo è comunque facilmente risolvibile.
Ma questi non funzionano nell’interferometria ottica dove le fasi del segnale sono lunghe appena 1μm (ossia nel vicino infrarosso) e dove quindi la tolleranza richiesta deve essere ancora dieci volte più piccola, Questo risultato però è ottenibile facendo convergere i fuochi dei 4 telescopi del VLT in un unico punto avendo cura che tutti i segnali percorrano esattamente la stessa distanza. In questo modo, e sfruttando sapientemente le ottiche adattive dei telescopi, si può raggiungere l’incredibile risultato di avere una risoluzione pari a circa un millesimo di secondo d’arco a  1μm di lunghezza d’onda. Il che significa risolvere un oggetto grande appena un paio di metri sulla Luna!

Links

Molecole organiche su Marte (prima parte)

Quando mi è stato concesso, ho sempre cercato di osservare le cose nel modo più ampio possibile e a cercare di stabilire dei collegamenti logici tra tutte le informazioni che mi sarebbero state utili per cercare di descriverle. Spesso è difficile star dietro al mio modo di ragionare, ma questo genere di approccio mi è sempre stato di aiuto per comprendere meglio ciò che in quel momento era alla mia attenzione. E forse anche per questo che sono sempre stato moderatamente scettico sul passato biologico marziano. È vero, ci sono stati i controversi risultati del Labeled Released Experiment [2] e sono state indicate alcune similitudini tra le microbialiti terrestri (ex. le stromatoliti) e le strutture osservate nei depositi argillosi su Marte [3], ma diciamocelo: finora non è mai stata accertata la presenza di vita ora o nel passato di Marte.
Affermare l’opposto o velatamente ammiccare alla scoperta della Vita su Marte come molti — anche autorevoli — siti e testate giornalistiche stanno facendo in queste ore è falso.

La ciclicità del metano

Andamento stagionale delle emissioni di metano nell’atmosfera di Marte in parti per miliardo correlati alla pressione atmosferica e alla posizione del pianeta nella sua orbita (longitudine solare). Le stagioni marziane sono analoghe a quelle terrestri ma molto più lunghe: un anno marziano corrisponde a 686,96 giorni terrestri. Credit: Christopher R. Webster, NASA/JPL — Edit: Il Poliedrico

Se avete seguito in questi anni questo blog, saprete senz’altro che la presenza sporadica di metano nell’atmosfera marziana era nota da anni: dal 2003 per la precisione [4]. In assenza di prove della presenza di organismi biologici per la metanogenesi (principalmente archaea) su Marte, è ovvio rivolgersi verso i meccanismi abiotici di produzione del metano [5][6], che qui sulla Terra sono responsabili di circa il 10% della produzione annua di questo gas rilasciato nell’atmosfera. Finora non erano note esattamente le cause della presenza del metano nell’atmosfera di Marte: si era creduto a una sporadicità magari derivata da un qualche impatto cometario  passato inosservato. Ma a causa dell’ambiente continuamente bombardato dalle radiazioni ultraviolette del Sole, il metano marziano rilasciato nell’atmosfera non potrebbe esistere per più di 100-300 anni, in contrasto quindi con quanto viene registrato fin dall’anno della scoperta della sua presenza (si tratta pur sempre di una manciata di molecole per miliardo vista la tenuità dell’atmosfera marziana) e soprattutto in seguito quando vennero scoperti dei rilasci altamente localizzati di metano ritenuti allora sporadici.
Per questi si era teorizzata una qualche forma di attività geotermica ancora esistente ma si sa anche che Marte ha cesaato ogni sua attività vulcanica importante da miliardi di anni. 
La scoperta della ciclicità stagionale del metano atmosferico marziano è la notizia. Questa è la conferma che l’ambiente marziano risente del cambiamento stagionale ben più di quanto finora era stato supposto. Qui i principali indiziati potrebbero essere i clarati 1 intrappolati nel sottosuolo che per effetto del mutare delle condizioni di insolazione e temperatura stagionali possono venire decomposti. l’acqua così liberata potrebbe anche avviare i processi di serpentinizzazione del basalto arricchendo così le quantità di metano rilasciato nell’atmosfera.

Questa scoperta è illustrata meglio nell’articolo di Science e nei suoi allegati che vi invito a leggere [7] nell’attesa che scriva anche la seconda parte.
Cieli sereni.

Zenone , Olbers e l’energia oscura (prima parte)

Mi pareva di aver già trattato in passato lo spinoso problema dell’Energia Oscura. Questo è un dilemma abbastanza nuovo della cosmologia (1998 se non erro) e sin oggi il più incompreso e discusso (spesso a sproposito). Proverò a parlarne partendo da lontano …

[video_lightbox_youtube video_id=”HRoJW2Fu6D4&rel=false” auto_thumb=”1″ width=”800″ height=”450″ auto_thumb=”1″]Alvy: «L’universo si sta dilatando»
Madre: «L’universo si sta dilatando?»
Alvy: «Beh, l’universo è tutto e si sta dilatando: questo significa che un bel giorno scoppierà, e allora quel giorno sarà la fine di tutto»
Madre: «Ma sono affari tuoi, questi?»
(Io e Annie, Woody Allen 1997)

Attorno al V secolo a.C. visse un filosofo che soleva esprimersi per paradossi. Si chiamava Zenone di Elea e sicuramente il suo più celebre fu quello di “Achille e la tartaruga“.
In questo nonsense Zenone affermava che il corridore Achille non avrebbe mai potuto raggiungere e superare una tartaruga se questa in un’ipotetica sfida fosse partita in vantaggio indipendentemente dalle doti del corridore; questo perché nel tempo in cui Achille avesse raggiunto il punto di partenza della tartaruga, quest’ultima sarebbe intanto andata avanti e così via percorrendo sì spazi sempre più corti rispetto ad Achille ma comunque infiniti impedendo così al corridore di raggiungere mai l’animale. Si narra anche che un altro filosofo,  Diogene di Sinope, a questo punto del racconto si fosse alzato e camminato, dimostrando l’infondatezza di quel teorema.
È abbastanza evidente l’infondatezza empirica di quel paradosso, nella sua soluzione Aristotele parlava di spazio e di tempo divisibili all’infinito in potenza ma non di fatto, una nozione oggi cara che si riscopre nella Meccanica Quantistica con i concetti di spazio e di tempo di Planck, ma ragionare su questo ora non è il caso.
Piuttosto, immaginiamoci cosa succederebbe se lo spazio tra A (la linea di partenza di Achille) e B (la tartaruga) nel tempo t che impiega Achille a percorrerlo si fosse dilatato. Chiamiamo D la distanza iniziale e v la velocità costante con cui Achille si muove: nella fisica classica diremmo che D è dato da t×v, ovvio. Ma se nel tempo t/2 la D è cresciuta di una lunghezza che chiameremo d, alla fine quando Achille coprirà la distanza D, il punto B sarà diventato D+2d e la tartaruga non sarebbe stata raggiunta nel tempo finito t neppure se fosse rimasta ferma.

Animazione artistica del Paradosso di Olbers.

Animazione artistica del Paradosso di Olbers.

Se sostituissimo ad Achille un quanto di luce, un fotone come ad esempio il buon vecchio Phòs, e alla pista della sfida il nostro Universo, avremmo allora ricreato esattamente il medesimo quadro fisico. Nel 1826 un medico e astrofilo tedesco, Heinrich Wilhelm Olbers, si chiese perché mai osservando il cielo di notte questo fosse nero. Supponendo che l’universo fosse esistito da sempre, fosse infinito e isotropo (oggi sappiamo che non è vera quasi nessuna di queste condizioni e l’Universo è isotropo solo su grande scala, ma facciamo per un attimo finta che lo siano), allora verso qualsiasi punto noi volgessimo lo sguardo dovremmo vedere superfici stellari senza soluzione di continuità. Questa domanda in realtà se l’erano posta anche Keplero, Isaac Newton e Edmund Halley prima di lui ma non sembrava allora forse una questione importante come invece lo è.
138 anni dopo, nel 1964, due ricercatori della Bell Telephone Company che stavano sperimentando un nuovo tipo di antenna a microonde, Arno Penzias e Robert Wilson [cite]http://ilpoliedrico.com/2014/03/echi-da-un-lontano-passato-la-storia.html[/cite] scoprirono uno strano tipo di radiazione che pareva provenire con la stessa intensità da ogni punto del cielo. Era la Radiazione Cosmica di Fondo a Microonde (Cosmic Microwave Background Radiation) che l’astrofisico rosso naturalizzato statunitense George Gamow negli anni ’40 aveva previsto 1 [cite]https://arxiv.org/abs/1411.0172[/cite] sulle soluzioni di Alexander Friedmann che descrivono un universo non statico come era stato dimostrato dal precedente lavoro di Hubble e Humason sulla recessione delle galassie. Questa intuizione è oggi alla base delle attuali teorie cosmologiche che mostrano come i primi istanti dell’Universo siano stati in realtà dominati dall’energia piuttosto che la materia, e che anche l’Universo stesso ha avuto un’inizio temporalmente ben definito – anzi il tempo ha avuto inizio con esso – circa 13,7 miliardi di anni fa, giorno più giorno meno. Il dominio dell’energia nell’Universo durò fino all’epoca della Ricombinazione, cioè fin quando il protoni e gli elettroni smisero di essere un plasma caldissimo e opaco alla radiazione elettromagnetica e si combinarono in atomi di idrogeno. In quel momento tutto l’Universo era caldissimo (4000 K, quasi come la superficie di una nana rossa). E qui che rientra in gioco il Paradosso di Olbers: perché oggi osserviamo che lo spazio fra le stelle e le galassie è freddo e buio permeato però da un fondo costante di microonde? Per lo stesso motivo per cui in un tempo finito t Achille non può raggiungere la linea di partenza della tartaruga, lo spazio si dilata.
Electromagneticwave3DI fotoni, i quanti dell’energia elettromagnetica come Phòs, si muovono a una velocità molto grande che comunque è finita, 299792,458 chilometri al secondo nel vuoto, convenzionalmente indicata con c. Queste particelle, che appartengono alla famiglia dei bosoni, sono i mediatori dei campi elettromagnetici. La frequenza di oscillazione di questi campi in un periodo di tempo t ben definito (si usa in genere per questo il secondo: f=1/t) determina la natura del fotone e è indicata con f: più è bassa la frequenza e maggiore la lunghezza d’onda: frequenze molto basse sono quelle delle onde radio (onde lunghe e medie, che in genere corrispondono alle bande LF e  AM della vostra radio, anche se AM sarebbe un termine improprio 2), poi ci sono le frequenze ben più alte per le trasmissioni FM 3, VHF, UHF, microonde, infrarossi, luce visibile, ultravioletti, raggi X e Gamma, in quest’ordine. Tutte queste sono espressioni del campo elettromagnetico si muovono nello spazio alla medesima velocità c, quello che cambia è solo la frequenza: f=cλ
Ma è anche vero che una velocità è l’espressione di una distanza D per unità di tempo (D=t×v), pertanto nel caso della luce potremmo anche scrivere che D=t×c. Ma se D cambia mentre c è costante, allora è anche t a dover cambiare. Per questo ogni variazione delle dimensioni dello spazio si ripercuote automaticamente nella natura dei campi associati ai fotoni: un aumento di D significa anche un aumento della lunghezza d’onda, quello che in cosmologia si chiama redshift cosmologico. Potremmo vederla anche come l’aumento della distanza tra diversi punti di un’onda con i medesimi valori del campo elettromagnetico (creste o valli) ma è esattamente la stessa cosa.
Per questo percepiamo buio il cielo: la natura finita e immutabile della velocità della luce trasla verso frequenze più basse la natura della luce stessa, tant’è che quello che noi oggi percepiamo la radiazione cosmica di fondo a microonde con una temperatura di appena 2,7 kelvin è la medesima radiazione caldissima che permeava l’intero Universo  380000 anni dopo che si era formato.
La migliore stima dell’attuale ritmo di espansione dell’Universo è di 73,2 chilometri per megaparsec per secondo, un valore enormemente piccolo, appena un decimo di millimetro al secondo su una distanza paragonabile a quella che c’è tra il Sole e la stella più vicina. Eppure l’Universo è così vasto che questo è sufficiente per traslare verso lunghezze d’onda maggiori tutto quello che viene osservato su scala cosmologica, dalla luce proveniente da altre galassie agli eventi parossistici che le coinvolgono. Questo perché l’effetto di stiramento è cumulativo, al raddoppiare della distanza l’espansione raddoppia, sulla distanza di due megaparsec lo spazio si dilata per 146,4 chilometri e così via, e questo vale anche per il tempo considerato, in due secondi la dilatazione raddoppia.
Le implicazioni cosmologiche sono enormi, molto più dell’arrossamento della luce cosmologico fin qui discusso. Anche le dimensioni dello stesso Universo sono molto diverse da quello che ci è dato vedere. Noi percepiamo solo una parte dell’Universo, ciò che viene giustamente chiamato Universo Osservabile che è poi è la distanza che può aver percorso il nostro Phòs nel tempo che ci separa dal Big Bang, 13,7 miliardi di anni luce.

Ora dovrei parlare del perché l’Universo si espande e del ruolo dell’Energia Oscura in tutto questo, ma preferisco discuterne in una seconda puntata. Abbiate pazienza ancora un po’.
Cieli sereni.

Osservate per la prima volta le onde gravitazionali con LIGO

A_long_time_ago

… c’era una coppia di buchi neri, uno di circa 36 volte la massa del Sole mentre l’altro era un po’ più piccolo, di sole 29 masse solari. Questi due pesantissimi oggetti, attratti l’uno dall’altro in una mortale danza a spirale hanno finito per fondersi insieme, come una coppia di ballerini sul ghiaccio che si abbraccia in un vorticoso balletto. Il risultato però è un po’ diverso: qui ne è uscito un oggetto un po’ più piccolo della semplice somma algebrica delle masse: 62 masse solari soltanto.
Il resto è energia dispersa, non molta per la verità date le masse in gioco, pressappoco come quanta energia potrebbe emettere il Sole nell’arco di tutta la sua esistenza. Solo che questa è stata rilasciata in un singolo istante come “onde gravitazionali“.

Ma cos’è un’onda gravitazionale?

spacetime-02La visione dello spazio che da sempre conosciamo è composta da tre uniche dimensioni, larghezza, altezza e profondità; o x, y e z, se preferite. Il tempo, un fenomeno comunque misterioso, fino agli inizi del XX secolo era considerato a sé. Una visione – poi confermata dagli esperimenti di ogni tipo – fornitaci dalla Relatività Generale è che il tempo è in realtà una  dimensione anch’essa del tessuto dello spazio; una quarta dimensione. insieme alle altre tre 1. Fino alla Relatività Generale di Einstein si era convinti che una medesima forza, la gravità, fosse responsabile sia della caduta della celebre mela apocrifa di Newton, che quella di costringere la Luna nella sua orbita attorno alla Terra e i pianeti nelle loro orbite attorno al Sole. Nella nuova interpretazione relativistica questa forza è invece vista come una manifestazione della deformazione di  uno spazio a quattro dimensioni, lo spazio-tempo, causata dalla massa degli oggetti. Così quando la mela cade, nella Meccanica Classica (essa è comunque ancora valida, cambia solo l’interpretazione dei fenomeni) la gravità esercitata dalla Terra attrae la mela verso di essa mentre allo stesso modo – e praticamente impercettibile – la Terra si muove verso la mela, nella Meccanica Relativistica è la mela che cade verso il centro di massa del pianeta esattamente come una bilia che rotola lungo un pendio e la Terra cade verso il centro di massa della mela nella stessa misura prevista dai calcoli newtoniani.
La conseguenza più diretta di questa nuova visione dello spazio-tempo unificato, è che esso è, per usare una metafora comune alla nostra esperienza, elastico; ossia si può deformare, stirare e comprimere. E un qualsiasi oggetto dotato di massa, se accelerato, può increspare lo spazio-tempo. Una piccola difficoltà: queste increspature dello spazio-tempo, o onde gravitazionali, sono molto piccole e deboli – la gravità è di gran lunga la più debole tra le forze fondamentali della natura –  tant’è che finora la sensibilità strumentale era troppo bassa per rivelarle. Se volessimo cercare un’analogia con l’esperienza comune, potremmo immaginare lo spazio quadrimensionale come la superficie di un laghetto a due dimensioni, mentre la quarta dimensione, il tempo, è dato dall’altezza in cui si muovono le increspature dell’acqua. Qualora buttassimo un sassolino l’altezza della increspatura sarebbe piccola, ma man mano se scagliassimo pietre con maggior forza e sempre più grosse, le creste sarebbero sempre più alte. Però vedremmo anche che a distanze sempre più crescenti dall’impatto, queste onde scemerebbero di altezza e di energia, disperse dall’inerzia delle molecole d’acqua 2; alcune potrebbero perdersi nel giro di pochi centimetri dall’evento che le ha  provocate, altre qualche metro e così via. Alcune, poche,  potrebbero giungere alla riva ed essere viste come una variazione di ampiezza nell’altezza del livello dell’acqua del laghetto e sarebbero quelle generate dagli eventi più potenti che avevamo prodotto in precedenza. Queste nello spazio quadrimensionale sono le onde gravitazionali e esse, siccome non coinvolgono mezzi dotati di una massa propria per trasmettersi come ad esempio il suono che è solo un movimento meccanico di onde trasmesse attraverso un mezzo materiale,  possono muoversi alla velocità più alta consentita dalla fisica relativistica:c, detta anche velocità della luce nel vuoto.

Il grande protagonista: LIGO

E’ stato LIGO-Laser Interferometer Gravitational-Wave Observatory (in italiano, Osservatorio Interferometro laser per onde gravitazionali) il protagonista di questa straordinaria scoperta: uno strumento formato da due strumenti gemelli, uno a Livingston (Louisiana) e l’altro a Hanford (Washington), a 3000 chilometri di distanza dal primo. Sono due gli interferometri, perché i dati possono venir confrontati e confermati: se entrambi gli strumenti rilevano lo stesso disturbo, allora è improbabile che sia legato ad un terremoto oppure a dei rumori di attività umana. Il primo segnale che conferma l’esistenza delle onde gravitazionali è stato rilevato dallo strumento americano Ligo il 14 settembre 2015 alle 10, 50 minuti 45 secondi (ora italiana), all’interno di una finestra di appena 10 millisecondi.

 David Reitze del progetto LIGO ha annunciato al mondo la scoperta delle onde gravitazionali: “We have detected gravitational waves. We did it!”. Crediti: LIGO

David Reitze del progetto LIGO ha annunciato al mondo la scoperta delle onde gravitazionali: “We have detected gravitational waves. We did it!”.
Crediti: LIGO

Ed eccole qui, in questo diagramma: l’onda azzurra, captata da LIGO di Livingston e l’onda arancio, captata da LIGO di Hanford. Sono sovrapponibili, il che ci dice che sono la stessa onda captata dai due strumenti gemelli. E’ la firma della fusione dei due buchi neri supermassicci con la conseguente produzione di onde gravitazionali. In altre parole, questa è la firma del nuovo buco nero che si è formato dai due precedenti e, come è accennato anche più sopra, le tre masse solari che mancano dalla somma delle due masse che si sono fuse assieme dando vita al nuovo buco nero di 62 masse solari si sono convertite in onde gravitazionali.
Volete udire il suono di un’onda gravitazionale? Sì, certo che è possibile…. E’ straordinario pensare che queste onde rappresentano la fusione di due buchi neri in uno nuovo e proviene da distanze incredibilmente grandi, in un’epoca altrettanto remota: un miliardo e mezzo di anni  fa.

Le prove indirette

Il decadimento orbitale delle due stelle di neutroni PSR J0737-3039 (qui evidenziato dalle croci rosse) corrisponde esattamente con la previsione matematica sulla produzione di onde gravitazionali.

Il decadimento orbitale delle due stelle di neutroni PSR J0737-3039 (qui evidenziato dalle croci rosse) corrisponde esattamente con la previsione matematica sulla produzione di onde gravitazionali.

La prima prova indiretta dell’esistenza delle onde gravitazionali si ebbe però nel 1974. In quell’estate, usando il radio telescopio di Arecibo, Portorico, Russel Hulse e Joseph Taylor scoprirono una pulsar che generava un segnale periodico di 59 ms, denominata PSR 1913+16. In realtà, la periodicità non era stabile e il sistema manifestava cambiamenti 3 dell’ordine di 80 microsecondi al giorno, a volte dell’ordine di 8 microsecondi in 5 minuti.
Questi cambiamenti furono interpretati come dovuti al moto orbitale della pulsar  4 attorno ad una stella compagna, come previsto dalla Teoria della Relatività Generale. Di conseguenza, due pulsar, in rotazione reciproca una attorno all’altra, emettono onde gravitazionali, in perfetta linea con la Relatività Generale. Per questi calcoli e considerazioni, Hulse e Taylor ricevettero nel 1993 il Premio Nobel per la fisica.

La presenza di una qualsivoglia stella compagna introduce delle variazioni periodiche facilmente rivelabili nel segnale pulsato della stella che i radioastronomi sono in grado di misurare con precisione inferiore ai 100 microsecondi. Giusto per farsi un’idea, immaginiamo di prendere il Sole e di farlo diventare una pulsar. Dal suo segnale pulsato, gli astronomi sarebbero in grado di rilevare la presenza di tutti i pianeti che orbitano attorno a questo Sole-pulsar, grazie al fatto che ogni pianeta causa uno spostamento del centro di massa del Sole di un certo valore espresso in microsecondi. La Terra per esempio, che si muove lungo la sua orbita ellittica, produce uno spostamento del centro di massa del Sole di ben 1500 microsecondi! 5


Per saperne di più:

La prima pulsar doppia” articolo di Andrea Possenti dell’INAF-Osservatorio Astronomico di Cagliari, pubblicato sul numero di Le Stelle, marzo 2004.

La notizia, pubblicata sul Physical Review Letters, porta i nomi di B. P. Abbott e della collaborazione scientifica di LIGO e VIRGO[cite]http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102[/cite].

 


Note:

Cosa c’era prima e il centro dell’Universo

 

Per la scienza sono più importanti le domande che le risposte. Potremmo considerarle, a ragione, proprio il motore dell’evoluzione umana. Le risposte sono invece, quasi per definizione, parziali e imprecise. Se non lo fossero, a risentirne sarebbe proprio lo sviluppo del pensiero umano, Se ci fossimo accontentati della cosmologia aristotelica, forse ora sarei qui a parlare di emicicli. Se avessimo seguito la convinzione imperante alla fine del XIX secolo che tutto era stato ormai scoperto, sicuramente oggi non saremmo qui perché la rivoluzione elettrica ed elettronica non sarebbe stata possibile senza il coraggio di chi ha saputo rimettere in discussione quanto era stato prima affermato.
Anche le mie risposte possono rivelarsi sbagliate, d’altronde non ho la scienza infusa in me e né pretendo di averla; questo lo lascio giudicare a voi. Comunque ricordate che sono sempre le domande che fanno il progresso.

 [latexpage]

Copyrigh: Iole Vaccaro   qui

Universe
Copyrigh: Iole Vaccaro
Emozioni Grafiche in Movimento

Qualche volta mi è capitato di partecipare a convegni e conferenze di cosmologia e tra gli interventi del pubblico in sala al momento del dibattito ricorrono spesso delle domande apparentemente banali, quasi fanciullesche nell’esposizione ma che in realtà invece sono terribilmente complesse. 
Rispondere a queste domande non è facile quanto porle, il problema vero sta nella nostra naturale e limitata capacità di intuire l’Universo e nel linguaggio per esprimerlo.
Come ebbe a dire Galileo Galilei, la matematica è l’alfabeto con cui Dio ha scritto l’Universo e il linguaggio per descriverlo il più fedelmente possibile è appunto la matematica. Invece il linguaggio naturale che abbiamo sempre parlato è un linguaggio limitato per esseri limitati, descriviamo tutto coi nostri sensi, con le nostre esperienze e limiti. Diamo per scontato che tutto abbia un inizio e quindi poi una fine; che ci siano solo tre dimensioni spaziali perché sperimentiamo continuamente un sopra e un sotto, un qui e là, un avanti e un indietro. 
Un magistrale racconto  scritto nel 1884 da Edwin Abbott, Flatlandia 1, esprime più di ogni altra parola il concetto della ristrettezza del nostro linguaggio naturale. Questa limitata capacità di linguaggio si riflette poi nella comprensione della complessità del Cosmo; per questo viene spontaneo farsi queste domande.

  • Se è vero che l’Universo si espande, attraverso cosa si espande?

Expansion of spacetime Copyrigh: Iole Vaccaro Emozioni Grafiche in Movimento

Expansion of spacetime
Copyrigh: Iole Vaccaro
Emozioni Grafiche in Movimento

Tutti noi abbiamo un orologio o un segnatempo, sia  esso anche una clessidra per cuocere le uova.
Quando lo osserviamo non ci stupiamo dei secondi, dei minuti e delle ore che crescono sempre. Lo diamo per scontato, assumiamo per vero e inconfutabile che oggi è un giorno più di ieri come dopodomani saranno due giorni a partire da oggi. Come diamo anche per scontato che nel tempo di una clessidra, un uovo immerso nell’acqua bollente si cuocia.
Le notizie che il tempo scorre sempre e solo nella direzione in cui aumenta e che una volta cotto un uovo non possa mai tornare crudo, non ci scandalizzano affatto.
Da quando Albert Einstein dimostrò che il tempo è in effetti una quarta dimensione di un insieme più ampio chiamato spaziotempo, è perfettamente naturale aspettarsi che lo stesso dinamismo valga anche per le tre restanti dimensioni spaziali.
E in effetti anche le distanze tra gli oggetti nel nostro universo aumentano inesorabilmente: è quella che chiamiamo Espansione Universale, scoperta da Hubble negli anni 20 del XX secolo riguardo all’allontanamento reciproco delle galassie [cite]http://ilpoliedrico.com/2012/10/la-costante-di-hubble-e-i-modelli-cosmologici.html[/cite]. Il valore oggi più accreditato per la Costante di Hubble $H_0$  è di 74,3 km/s per megaparsec, ossia ogni secondo un megaparsec è più grande del secondo precedente di 74,3 chilometri. Se vi sembra un numero gigantesco, considerate che ogni secondo un metro di spazio si allunga di  2,407 attometri 2. Pensate che perché un metro si allunghi tanto da includere un atomo di idrogeno (50 picometri 3) occorrono più di 20 milioni di anni.
Esso cresce continuamente, ma non per questo significa che si espanda dentro qualcosa, aumenta le sue dimensioni stirando e appiattendo lo spazio precedente, continuando ancora oggi l’esperienza della sua formazione 4.
Come vedete, lo spazio si comporta esattamente come il tempo. Anche la direzione è la stessa. Il tempo, lo spazio e la direzione dell’entropia puntano esattamente nella stessa direzione, forse l’unica direzione che permette la vita nell’Universo e la stessa che vi garantisce un uovo alla coque nel tempo di una clessidra. 

  • Dov’è il centro dell’Universo?

Credit: il Poliedrico

Credit: il Poliedrico

Semplice, nell’osservatore; il che equivale che lui e solo lui è nella condizione privilegiata di esserlo o che lo è ogni punto dell’Universo.
Un osservatore vedrà la stessa cosa ovunque egli sia e in qualsiasi epoca: il raggio d’azione dei suoi sensi è legato all’età stessa dell’Universo, il tempo di Hubble 5.
Pertanto che si trovi qui ora, o sulla galassia più lontana nel passato, nel presente o nel futuro, avrà il privilegio di percepirsi sempre al centro dell’Universo. Per quanto ai nostri sensi appaia incredibile un vero centro geometrico l’Universo non ce l’ha!

  • Cosa c’era prima del Big Bang?

Mappa della radiazione cosmica di fondo dell?Universo. È il più antico segnale che potremmo mai ricevere.

Mappa della radiazione cosmica di fondo dell?Universo. È il più antico segnale che potremmo mai ricevere.

Questa è la domanda delle domande. Forse è la più diffusa e difficile a cui rispondere, e forse perché non c’è veramente una risposta.
Potrei dire che la scienza ufficiale non può dare una risposta perché essa è limitata dalla fisicità dell’universo. Le leggi fisiche finora conosciute ci consentono di  esplorare fino a pochi istanti prima di quel fenomeno, chiamato Big Bang, che supponiamo abbia originato il nostro universo. Per andare ancora oltre quei primissimi istanti occorre una legge della gravità quantistica, che sappia cioè unire la forma della gravità relativistica classica con i principi della meccanica quantistica.
Purtroppo, pur intuendone molti aspetti esteriori, una legge simile ancora non è stata trovata [cite]http://ilpoliedrico.com/2014/04/ricerca-santo-graal-fisica-gravita-quantistica.html[/cite].
Innanzitutto occorre precisare che nessuno mai potrà vedere direttamente il Big Bang. L’evento più vicino al Big Bang che è possibile vedere direttamente è la Radiazione Cosmica di Fondo a microonde che altro non è che il fronte di quando l’Universo divenne abbastanza grande e freddo da permettere alla materia e l’energia di disaccoppiarsi quando l’Universo aveva appena 380 000 anni.
Si suppone che i fotoni generati dal Big Bang possano aver lasciato la loro orma su questo muro sotto forma di radiazione altamente polarizzata, ed è quello che si sta cercando di capire attraverso una mappatura estremamente accurata con vari strumenti sia in orbita che sulla Terra [cite]http://ilpoliedrico.com/2014/04/echi-lontano-passato-novita.html[/cite] [cite]http://ilpoliedrico.com/2014/06/echi-lontano-passato-incertezze.html[/cite].

Before the Big Bang Copyrigh: Iole Vaccaro Emozioni Grafiche in Movimento

Before the Big Bang
Copyrigh: Iole Vaccaro
Emozioni Grafiche in Movimento

Ma di tutto quello che accadde tra il Big Bang e il disaccoppiamento materia-energia è frutto di simulazioni matematiche basate sulle leggi fisiche conosciute e applicate a quelle condizioni particolari. Questo metodo consente di risalire a condizioni fisiche esistenti fino a poche frazioni di secondo a partire dal Big Bang. Ovviamente queste condizioni particolari della materia-energia nell’Universo primordiale sono state verificate con esperimenti della Fisica delle Alte Energie, quindi anche se poi alla luce di nuove scoperte scientifiche dovessero rivelarsi errate, è importante ricordare che comunque non sono semplici ipotesi campate in aria. Risolvere l’altra frazione di secondo è tutta un’altra storia; come ho detto occorre una nuova fisica che contempli sia la gravità classica che la meccanica quantistica in un’unica, nuova, struttura.
Di conseguenza non sappiamo nulla dell’istante in cui è nato l’Universo, sappiamo solo quello che è successo in seguito. La scienza si ferma qui, questo è il limite ultimo in cui uno scienziato può rispondere con sicurezza. Il resto sono solo speculazioni e congetture che esulano dalla scienza ed entrano nel campo della metafisica.

 Dopo questa importante premessa sui limiti dell’attuale scienza potremmo anche avviarci lungo un cammino per esplorare le varie risposte date da cosmologi, fisici e teologi che vanno da un ribollio caotico di nuovi universi in perenne nascita con leggi fisiche e dimensioni diverse fino al disegno intelligente di qualcosa che si pone fuori dalla creazione che di cui ne è anzi opera.
A questo punto il cammino per scoprire cosa c’era prima del Big Bang si fa incerto, senza l’appoggio di un bastone affidabile come la scienza, quale percorso scegliere? 


Note:

Come ti calcolo le proprietà di un esopianeta (prima parte)

[latexpage]

La scoperta di un enorme numero dei pianeti extrasolari in questi ultimi vent’anni ha sicuramente rivoluzionato l’idea di Cosmo. A giugno di quest’anno erano oltre 1100 i pianeti extrasolari scoperti e accertati nel catalogo di exoplanet.eu, facendo stimare, con le opportune cautele dovute a ogni dato statistico, a circa 60 miliardi di pianeti potenzialmente compatibili con la vita. Questo impressionante numero però non deve far credere immediatamente che 60 miliardi di mondi siano abitabili; Venere, che dimensionalmente è molto simile alla Terra, è totalmente incompatibile con la vita terrestre che, probabilmente, si troverebbe più a suo agio su Marte nonostante questo sia totalmente ricoperto da perossidi, continuamente esposto agli ultravioletti del Sole e molto più piccolo del nostro globo.

In concreto come si fa a calcolare i parametri fisici di un pianeta extrasolare? Prendiamo l’esempio più facile, quello dei transiti. Questo è il metodo usato dal satellite della NASA Kepler, che però soffre dell’handicap geometrico del piano planetario che deve giacere sulla stessa linea di vista della stella,o quasi. Ipotizziamo di stare osservando una debole stellina di 11a magnitudine, che però lo spettro indica come una K7:

 [table “57” not found /]

diagramma di luce

La distanza

La tabella di Morgan-Keenan suggerisce per questo tipo di stella una massa di 0,6 masse solari,  una temperatura superficiale di appena 4000 K. e un raggio pari a 0,72 volte quello del Sole. Analizzando invece questo ipotetico diagramma del flusso di luce 1 proveniente dalla stella, appare evidente  la periodicità dell’affievolimento (qui esagerato) della sua luce.
Un periodo pari a 76,86 giorni terrestri, un classico evento tipico anche di una semplice binaria ad eclisse per esempio, solo molto più veloce. Un semplice calcolo consente di trasformare il periodo espresso qui in giorni in anni (o frazioni di esso). Pertanto il suo periodo rispetto agli anni terrestri è $76,86/365,25= 0,2104$. A questo punto è sufficiente applicare la terza Legge di Keplero per ottenere la distanza del pianeta dalla sua stella espresso in unità astronomiche:

D3UA=P2yM=30,210420,.6=0,2983 Quindi l’esopianeta scoperto ha un periodo orbitale di soli 76,86 giorni e orbita a una distanza media di sole 0,2368 unità astronomiche dalla stella, ossia a poco più di 44.6 milioni di chilometri dalla stella. Una volta scoperto quanto dista il pianeta dalla stella è facile anche calcolare la temperatura di equilibrio del pianeta, per vedere se esso può – in linea di massima – essere in grado di sostenere l’acqua allo stato liquido.

La temperatura di equilibrio

πR2p4πd2=(Rp2d)2 L’energia intercettata da un pianeta di raggio $R_p$ in orbita alla sua stella  a una distanza $d$

Per comodità di calcolo possiamo considerare una stella come un perfetto corpo nero ideale. La sua luminosità è perciò dettata dall’equazione: $L_{\bigstar}=4\pi R_{\bigstar}^2\sigma T_{\bigstar}^4$, dove $\sigma$ è la  costante di Stefan-Boltzmann che vale  $5,67 \cdot{10^{-8}} W/m^2 K^4$). Qualsiasi pianeta di raggio $R_p$ che orbiti a distanza $d$ dalla stella cattura soltanto  l’energia intercettata pari alla sua sezione trasversale $\pi R_p^2$ per unità di tempo e  divisa per l’area della sfera alla distanza $d$ dalla sorgente. Pertanto si può stabilire che l’energia intercettata per unità di tempo dal pianeta è descritta dall’equazione: 4πR2σT4×(Rp2d)2

Ovviamente questo potrebbe essere vero se il pianeta assorbisse tutta l’energia incidente, cosa che per fortuna così non è, e riflette nello spazio parte di questa energia. Questa frazione si chiama albedo ed è generalmente indicata con la lettera $A$. Quindi la precedente formula va corretta così: (1A)×4πR2σT4×(Rp2d)2

Il pianeta (se questo fosse privo idealmente di una qualsiasi atmosfera) si trova così in uno stato di sostanziale equilibrio termico tra l’energia ricevuta, quella riflessa dall’albedo e la sua temperatura. L’energia espressa dal pianeta si può descrivere matematicamente così: $L_{p}= 4\pi R_{p}^2\sigma T_{p}^4$ e, anche qui per comodità  di calcolo, si può considerare questa emissione come quella di un qualsiasi corpo nero alla temperatura $T_p$. Pertanto la temperatura di equilibrio è: \begin{equation}

4\pi R_{p}^2\sigma T_{p}^4 =\left ( 1-A \right ) \times 4\pi R_{\bigstar}^2\sigma T_{\bigstar}^4\times \left ( \frac{R_p}{2d}\right )^2 \end{equation}

Ora, semplificando quest’equazione si ottiene: T4p=(1A)T4(R2d)2Tp=T(1A)1/4R2d

Con i dati ottenuti in precedenza è quindi possibile stabilire la temperatura di equilibrio dell’ipotetico esopianeta ipotizzando un albedo di o,4: \begin{equation}

T_{p}=4000 \enskip K \cdot 0,6 ^{1/4}\sqrt { \frac{500 000 \enskip km}{2\cdot 4,46\cdot 10^7\enskip km}} =263,47 \enskip K.

\end{equation}

Risultato: l’esopianeta pare in equilibrio termico a -9,68 °C, a cui va aggiunto alla superficie l’effetto serra causato dall’atmosfera. Ma in fondo, anche le dimensioni contano …

Il raggio

1353958553795

Il calo della luminosità indica le dimensioni dell’oggetto in transito: $r^2/R^2$

Nel momento del transito, si registra un calo della luminosità della stella.  L’ampiezza di questo calo rispetto alla luminosità standard della stella fornisce una stima della misura del raggio del pianeta. Il calo non è immediato, ma segue un andamento proporzionale alla superficie del pianeta occultante, uguale sia in ingresso che in  uscita. In base a queste osservazioni si possono ricavare i flussi di energia luminosa (indicati appunto dalla lettera $F$) provenienti nei momenti del transito. $F_{\bigstar}$ è la quantità di energia luminosa osservata nella fase di non transito, normalmente normalizzato a 1, mentre l’altra $F_{transito}$ rappresenta il flusso intercettato nel momento di massimo transito:. la differenza tra i due flussi ( $\frac{\Delta F}{F}=\frac{F_{\bigstar}-F_{transito}}{F_{\bigstar}}$) è uguale alla differenza tra i raggi della stella e del pianeta.

Rp=RΔFF

Il diagramma (ipotetico) a destra nell’immagine qui sopra mostra che il punto più basso della luminosità è il 99,3% della luminosità totale. Risolvendo questa equazione per questo dato si ha: RpR=ΔFF=ΔF=10,993=0,007=0,08366

Conoscendo il raggio della stella, 500000 km, risulta che l’esopianeta ha un raggio di quasi 42 mila chilometri,  quasi il doppio di Nettuno!

Seconda Parte

 

 Errata corrige

Un banale errore di calcolo successiva all’equazione (1) ha parzialmente compromesso il risultato finale dell’equazione (7) e del risultato della ricerca. Il valore della distanza del pianeta dalla sua stella è di 44,6 milioni di chilometri invece dei 35,4 milioni indicati in precedenza. Ci scusiamo con i lettori per questo spiacevole inconveniente prontamente risolto.


Note:

Canon Hack Development Kit (prima parte)

L’evoluzione tecnologica e la miniaturizzazione dei componenti elettronici negli ultimi 20 anni ha donato molte opportunità di ricerca ai semplici appassionati che prima erano appannaggio solo dei centri di ricerca dotati di strumenti spesso ingombranti e molto costosi. L’opportunità di disporre di hardware ottimo e poco costoso e la  possibilità di creare un firmware open source hanno fatto il resto: una semplice compact-camera può diventare un potentissimo strumento il cui unico suo limite è la creatività dell’utente finale.

Canon Powershot A650is

Oggi le macchinette fotografiche “point and shoot” con tecnologia CCD e display posteriore sono quasi in ogni casa: piccole, facili e svincolate dal laborioso processo di stampa chimica, hanno veramente portato la fotografia “ovunque”.
Per soddisfare le richieste del mercato, i vari costruttori hanno dotato di processori DSP sempre più potenti e veloci le loro compact-camera per offrire al grande pubblico funzioni – spesso totalmente automatizzate – che vanno dalla macrofotografia alla ritrattistica fino alla fotografia sportiva. Queste compact-camera dotate di hardware così potente non potevano certo passare inosservate ai tanti appassionati evoluti di fotografia, ingegneria e programmazione.

Così, nel pieno spirito hacker, è nato il progetto CHDK (Canon Hack Development Kit) avente lo scopo di creare un firmware alternativo ed open source capace di sfruttare tutte le potenzialità dell’hardware offerto da una classe particolarmente potente di compact-camera: le Powershot 1, per poi essere gradualmente esteso anche alla classe più professionale EOS 2 (solo alcune).

Il processore Canon Digic II

Alcune caratteristiche ricercate ad esempio in astronomia sono le esposizioni lunghe, il controllo remoto della fotocamera e l’accesso ai dati RAW non compressi, cioè ai dati grezzi che escono direttamente dal sensore CCD e ancora non elaborati dalle primitive grafiche del software della fotocamera. Il formato RAW è invece  abitualmente offerto sui modelli di classe superiore che condividono gran parte dello stesso hardware.
Il progetto open source software noto con l’acronimo CHDK iniziò alcuni anni fa, quando il programmatore russo Andrey Gratchev ebbe successo nel reverse engineering del Canon Digital Imaging Core (DIGIC), il circuito integrato custom che controlla tutte le fotocamere digitali Canon.
Una volta comprese le funzioni del DIGIC e il modo di controllarle, altri programmatori volontari svilupparono un firmware alternativo Open Source sotto la licenza GNU Public License (GPL) 3.

Grazie a questo firmware open source alternativo a quello ufficiale adesso è possibile sfruttare tutta la potenza dell’hardware disponibile. Cosa si può fare e come farlo sarà oggetto del prossimo articolo, restate in attesa!

(segue)

La prima condanna per inquinamento luminoso in Italia

 

 

 

 

 Finalmente una bella notizia!
Per lo specifico vi rimando al link dell’Unione Astrofili Italiani, permettetemi però di spiegare perché reputo questa una buona notizia non solo per la lotta contro l’inquinamento luminoso, ma anche per  quello ambientale.

Per illuminare un’area del vostro giardino o terrazzo (ma questo vale anche per gli spazi pubblici) occorre una certa energia per produrre luce. Se a questa però si consente anche di disperdersi verso il nulla, occorrerà più luce – e quindi più energia – per illuminare ad un certo modo il luogo desiderato.
Se invece quella luce dispersa viene diretta dove è necessario occorrerà generare meno luce – e quindi sarà necessaria meno energia – per ottenere lo stesso grado di illuminazione.

Minore consumo di energia significa generarne di meno e di conseguenza inquinare di meno. Quindi un attento uso di lampade ad alta efficienza, superfici riflettenti e specchi può limitare fortemente l’inquinamento luminoso e contemporaneamente contribuire alla riduzione dei gas serra responsabili del Global Warming generati per produrre l’energia elettrica che alimenta le vostre lampadine.

Unione Astrofili Italiani – UAInews.

Un flare solare mai visto prima

 

di Sabrina Masiero

 

 

Il flare solare osservato il 7 giugno 2011. Cortesia Solar Dynamics Observatory/NASA.

Qualche giorno fa, il 7 giugno 2011, un’email del Dr. Jack Ireland del Solar Dynamics Observatory /NASA molto mattutina e di una sola riga annunciava un evento davvero unico nella storia della fisica solare: ”Never seen anything like this before — spectacular” era il titolo di questa mail.
Non stava affatto scherzando.

Un magnifico flare alle 06:41 del Tempo Universale, il campo magnetico solare sopra il complesso di macchie solari 1226-1227 è diventato instabile e ha iniziato ad eruttare. L’esplosione che ne è risultataha prodotto un flare solare di classe M2 e una tempesta solare di classe S1, e un video davvero incredibile ottenuto dal Solar Dynamics Observatory (SDO) a varie lunghezze d’onda.

Ma in questo evento spettacolare c’è di tutto: un flare solare, un’onda coronale, un eruzione a filamento, un’espulsione di massa coronale (CME) e una pioggia coronale solo per dare alcuni nomi.
Qui sotto alcuni video ripresi a varie lunghezze d’onda.

304 Angstrom Video
171 Angstrom Video
211 Angstrom Video

 

Immagine ottenuta dal satellite HINODE XRT – 7 giugno 2011 ore 10:39 UT. Fonte: http://www.lmsal.com

Questo insolito flare causerà in queste ore una serie di interferenze e interruzioni con i satelliti di comunicazione, con i sistemi che forniscono la posizione sulla Terra (global positioning systems) e con altri dispositivi. Tuttavia questo non produrrà gravi danni. I voli dagli Stati Uniti verso l’Asia che attraversano una regione polare, verranno sicuramente modificati, per motivi di sicurezza e per poter mantenere le comunicazione con la torre di controllo.

Sicuramente anche le aurore boreali (Northen Lights) e le aurore australi (Southern Lights) saranno sicuramente ben visibili a partire da questa sera.

L’eruzione sul Sole è stata piuttosto drammatica” ha affermato Bill Murtagh, Program Coordinator presso lo Space Weather Prediction Center del National Weather Service (NWS) americano. “Abbiamo osservato il flare iniziale che non era poi così grande quanto, invece, lo è stata l’eruzione associata ad esso che ha liberato una radiazione di particelle energetiche associata ad un coronal mass injection“.

Gli scienziati che lavorano presso lo Space Weather Prediction Center in queste ore stanno monitorando e determinando la direzione del getto, perchè la maggior parte del materiale eiettato non è altro che gas associato ad un campo magnetico. Una parte di questo materiale probabilmente raggiungerà la Terra  dando vita ad una tempesta geomagnetica.

Non ci sia aspetta che sia tra le più drammatiche registrate finora, probabilmente la tempesta sarà di livello moderato: secondo i calcoli dello Space Weather Prediction Center l’evento dovrebbe produrre una tempesta geomagnetica con un’attività tra G1 (minimo) e G2 (moderato). I calcoli hanno previsto che l’evento possa aver avuto iniziato già a partire dalle 18 GMT di ieri sera.

 

 

Per ulteriori informazioni:

Geeked on Goddard – http://geeked.gsfc.nasa.gov/?p=6438

The Sun Today – http://www.thesuntoday.org/current-observations/a-spectacular-event-a-filamentprominence-eruption-to-blow-your-socks-off/
Helioviewer.org: http://www.helioviewer.org/

SpaceWeather.com: http://spaceweather.com/

Altre informazioni su:  Solar Soft: http://www.lmsal.com/solarsoft/last_events/

Space Daily: http://www.spacedaily.com/reports/Dramatic_solar_flare_could_disrupt_Earth_communications_999.html

Sabrina

 


 

 

Pubblicato originariamente su: http://tuttidentro.wordpress.com/2011/06/09/un-flare-solare-mai-visto-prima/

Le origini della Vita (prima parte)

«Da questo spirito poi, che è detto vita dell’universo, intendo nella mia filosofia provenire la vita et l’anima a ciascuna cosa che have anima et vita, la qual però intendo essere immortale; come anco alli corpi. Quanto alla loro substantia, tutti sono immortali, non essendo altro morte».
Giordano Bruno

200px-Giordano_Bruno_Campo_dei_Fiori[1]
Giordano Bruno a
Campo de’ Fiori (Roma)
Nei giorni scorsi Stephen Hawking ha fatto un’affermazione che per gli scienziati è abbastanza scontata, basta leggersi qualsiasi intervista o lavoro sull’argomento “forme di vita extraterrestri” prodotto dalla comunità scientifica per scoprire le stesse cose. Hawking ha solo presentato una serie di documentari per Discovery Channel che subito i media, profani, di tutto il mondo hanno gridato al pericolo extraterrestre.
Ma cosa ha detto mai Hawking?
Hawking ha cercato solo di spiegare che in universo composto da miliardi di galassie ognuna di esse con centinaia di milioni di stelle è assai improbabile che la vita (per Grazia Divina) si sia sviluppata soltanto qui sulla Terra, è quello che dai tempi di Giordano Bruno la Scienza cerca di dire e che alle persone di buon senso questa affermazione appare ovvia, anch’io ho trattato quest’argomento agli albori  di questo Blog con una serie di articoli (Dove sono l’omini verdi(prima parte)(seconda parte)(terza parte) ).
Poi Hawking ha affermato che molte di queste altre forme di vita potranno essere soltanto degli organismi semplici, anche per la Terra è stato così per gran parte della sua esistenza (da 3,8 miliardi di anni fa fino a 600 milioni di anni fa, Precambriano). Le relativamente poche forme di vita intelligente, potrebbero costituire una potenziale minaccia per il genere umano come lo è stato nella storia del genere Umano ogni volta che civiltà più evolute tecnologicamente si sono incontrate con quelle meno progredite, per questo bastano e avanzano gli esempi storici dell’avanzata europea nel mondo: gli spagnoli in Sud America, gli inglesi in Asia e Nord America, etc.
Un’altro pericolo reale è che queste altre forme di vita possono essere portatori di letali malattie come lo è stata per noi la peste nel XIV secolo o il virus Ebola (nel libro “La guerra dei mondi” di Herbert George Wells i marziani devastano le città terrestri ma muoiono tutti a causa delle malattie di cui noi però possediamo gli anticorpi), ma lo stesso può valere per l’inverso.
Più o meno le stesse cose le affermava anche Carl Sagan ad esempio, anche se per Sagan il contatto con altre civiltà sarebbe potuto esserci solo per via radio, viste le distanze siderali che ci separerebbero dalle altre civiltà, praticamente insormontabili per la fisica come la conosciamo, ma efficaci, come ho anch’io illustrato nei miei suddetti precedenti articoli, di gettare nel panico le nostre convinzioni basate sull’unicità dell’Uomo nell’Universo e di sconvolgere la nostra civiltà.

449366main_spitzer-20061010-226[1]
Rappresentazione artistica
della fascia degli asteroidi
Cortesia NASA

Ora, è notizia di queste ore, che una ricerca guidata dall’astronomo Andrew Rivkin della Johns Hopkins University durata sei anni, abbia portato alla scoperta di acqua e composti organici a base carbonio sull’asteroide 24 Themis, che orbita nella fascia principale di asteroidi  a 479 milioni di chilometri dal Sole, L’eccezionalità della scoperta è che a quella distanza si riteneva improbabile che l’acqua si potesse essere conservata per 4,6 miliardi di anni, dalla nascita del Sistema Solare, ma il bello della Scienza è quello di dubitare sempre sui dogmi e di rimettersi continuamente in gioco e così che è stata fatta la scoperta.
La scoperta di acqua nel nostro sistema solare non è propriamente una novità, sappiamo che essa esiste sulle lune dei pianeti esterni, nelle comete e recentemente è stata scoperta anche sulla Luna. Sappiamo anche di composti organici a base carbonio scoperti nelle comete (sonda Giottocometa di Halley, 1986) e nell’Universo grazie ai radiotelescopi.
Quello che sta a significare la scoperta è che essa è un’altro importante punto a favore all’ipotesi che la vita, o comunque i suoi mattoni fondamentali possono essere nati al di fuori ,e comunque non necessariamente, sulla Terra.
Questa è la teoria della Panspermia.
Ora se credete che l’Universo sia nato il 23 ottobre del 4004 a.C. verso mezzogiorno, ossia siete dei Creazionisti, vi conviene fermarvi qui e non andare oltre, perché l’argomento di cui parlerò nella second

a parte potreste giudicarlo blasfemo.

(continua)