L’equilibrio idrostatico nelle atmosfere planetarie

[latexpage]

Cercare altre forme di vita complesse al di fuori del nostro pianeta non può prescindere dal cercare innanzitutto habitat anche solo potenzialmente adatti; per questo ho in passato affrontato temi importanti come la stima della CHZ (Circumstellar Habitable Zone), dello spessore delle atmosfere e della necessità di un campo magnetico planetario adeguato a protezione di queste. Solo il tempo e nuovi strumenti di indagine potranno aiutare ad individuare questi habitat alieni, io mi limito solo a indicare, anche col vostro prezioso contributo di commentatori, quali condizioni a contorno sono necessarie – allo stato attuale delle conoscenze – affinché un habitat sia potenzialmente adatto alla Vita.

equilibrio idrostatico

Gli strati di una atmosfera e il loro equilibrio idrostatico.
Credit: Il Poliedrico

Dopo avere visto quali meccanismi sono alla base della genesi di una atmosfera planetaria e quali altri elementari meccanismi regolano il suo spessore, adesso è giunto il momento di affrontare il tema forse più ostico di tutti: quali sono le condizioni fisiche di una atmosfera.
Queste condizioni non sono solo dettate dalla cruda composizione chimica ma anche dai valori di temperatura, densità e pressione presenti.
Ad esempio dalla stima della pressione è possibile ipotizzare la presenza di acqua in fase liquida sulla superficie di un pianeta per un dato intervallo di temperature sopra il suo punto di congelamento 1, una delle diverse condizioni a contorno – probabilmente – necessarie alla nascita e allo sviluppo della Vita.
La temperatura è l’energia cinetica delle particelle, più essa è alta e più velocemente gli atomi – oppure le molecole – si muovono, mentre per la densità dei gas di solito ci si riferisce al numero delle particelle per unità di volume.
La pressione di un gas è la quantità di forza esercitata su una superficie per unità di area dalle sue particelle costituenti 2 che si muovono in modo del tutto casuale e la cui velocità è proporzionale alla temperatura del gas.
Riassumendo questo concetto in termini puramente matematici scriveremmo:
Pressione=ForzaArea
In pratica potremmo considerarlo il peso dell’aria su una superficie al livello del mare: un chilogrammo per centimetro quadrato sulla Terra, su Venere sarebbero 92 Kg/cm2 (92 bar) e così via 3.

Questi tre parametri apparentemente così diversi sono in realtà legati 4 da una equazione di stato, la Legge dei Gas Perfetti. Adesso in natura non esiste un’atmosfera che sia un Gas Ideale, ma molti gas reali, quali azoto, ossigeno, idrogeno etc. possono essere considerati con buona approssimazione come Gas Perfetti.
Per questa legge, un raddoppio di temperatura o un raddoppio della densità di un gas porta al raddoppio della sua pressione 5.

spinta idrostatica piccolaMa come abbiamo visto nel precedente articolo, la gravità svolge un ruolo determinante per determinare lo spessore, e quindi il volume, di una atmosfera. La gravità attrae verso il suo centro tutte le sue particelle – potremmo dire verso il basso – mentre l’agitazione termica delle particelle le si oppone.
Con un volume ben definito, possiamo immaginare una atmosfera come un qualsiasi sistema (recipiente) chiuso. Qualsiasi variazione nella densità o nella temperatura di una atmosfera quindi si riperquoterà sulla sua pressione. Ma esiste un equilibrio ben preciso che lega la pressione di un gas alla forza di gravità: si chiama equilibrio idrostatico 6.
Come mostra la figura qui accanto, alla gravità si oppone una forza chiamata gradiente di pressione verticale. Una particella a una certa quota è sovrastata da un numero minore di altre particelle rispetto a una che è al suolo, per cui la pressione esercitata su di essa dalle altre decresce con l’aumentare dell’altezza. Questo spinge i gas a salire, cioè a passare da dove la pressione è maggiore verso quote dove la pressione è minore, opponendosi alla forza di gravità. Quando le due forze opposte si bilanciano si parla appunto di equilibrio idrostatico. Questo processo suddivide l’atmosfera in strati di diversa pressione e temperatura – e per certi versi anche di composizione chimica –  diversi tra loro.
Matematicamente avremmo:
FP=ΔPA
Dove $\Delta P$ è la differenza tra la pressione inferiore e quella superiore di uno strato mentre $A$ è la sua area analizzata. Invece la forza di gravità è data da:
FG=mg
dove $g$ è l’accelerazione di gravità del pianeta considerato 7 e $m$ la massa dello strato di atmosfera considerato. Se l’equilibrio idrostatico si ha quando $F_P=F_G$ e se $\Delta z$ è lo spessore dello strato indicato di densità $p$ allora:
ΔPA=pAΔzg
ossia
ΔPΔz=pg
Ovviamente questa trattazione matematica è sui generis, non tiene conto di migliaia di altri fattori come l’insolazione, i moti verticali nel fluido atmosferico, la Forza di Coriolis, i venti etc. Semplicemente dice quanto la pressione – legata al prodotto tra la densità dello strato $p$ e $g$ – vari di una certa quantità $\Delta P$ al  variare di una certa quota $\Delta z$.

Con questo articolo non si conclude certo l’argomento trattato, ossia le atmosfere planetarie, ma aggiunge un altro tassello al complesso mosaico della planetologia nella speranza che un giorno potremo veramente studiare una vera atmosfera di un esopianeta roccioso. Spero che questa mia fatica ricompensi voi lettori a leggerla quanto me a scriverla.


Superconduzione nelle stelle di neutroni

La nebulosa HEIC 0609a, i resti di Cas A
Credit: NASA , ESA , and the Hubble Heritage STScI /AURA )-ESA /Hubble Collaboration. Acknowledgement: Robert A. Fesen (Dartmouth College, USA) and James Long (ESA/Hubble)

Forse la vide il Flamsteed, 332 anni fa, come una debole stellina di sesta magnitudine lassù sopra a Caph (β Cas), proprio dove le polveri del piano galattico sono più spesse.

In realtà quella stellina era una  supernova del tipo IIb, ovvero il risultato del collasso di una massiccia supergigante rossa al termine della sua vita, distante 11000 anni luce. Solo l’assorbimento della polvere interstellare lungo il piano galattico ha impedito che fosse più visibile di una debole stellina di appena 6a magnitudine agli osservatori della fine del XVII secolo.
Questa supernova fu riscoperta nel 1947 con i primi radiotelescopi, rivelandosi da subito come la sorgente radio extrasolare più brillante del cielo.
Cas A, questo è il suo nome, continua ancora a stupire gli scienziati dopo tutti questi anni.
Alcune teorie in passato  ipotizzavano che della supernova fosse rimasto un buco  nero, ma forse in questo caso sbagliavano.
Probabilmente quello che resta della supergigante è una stella di neutroni,  una stella così densa che gli elettroni e i protoni riescono a fondersi insieme annullando la loro opposta carica elettrica trasformandosi in neutroni 1.

L’osservatorio spaziale a raggi X Chandra ha scoperto che questa stella di neutroni si è raffreddata di circa il quattro per cento durante un periodo di osservazioni di 10 anni.
Questo calo di temperatura indica che qualcosa di insolito sta accadendo all’interno di Cas A.
In una serie di lavori apparsi su alcune riviste riviste scientifiche più di un anno fa, si è discusso di questo curioso raffreddamento, arrivando alla conclusione che probabilmente la stella di neutroni sta attraversando un periodo in cui i protoni rimanenti nel nucleo della stella sono in uno stato superfluido. In questo caso i protoni -che sono portatori di carica elettrica – creano un superconduttore 2 3.

Questi studi ampliano la nostra conoscenza sugli stati della materia degenere in condizioni limite, che in questo caso porta a creare uno stato di superconduttività a temperature prossime al miliardo di gradi quando sulla Terra si può ottenere la superconduttività solo con materiali e condizioni particolari a temperature bassissime.

Cas A non solo quindi ci dà l’opportunità – rara se non unica – di studiare una stella di neutroni molto giovane e di verificare subito i nostri modelli teorici su questo particolare tipo di oggetti, ma possiamo studiare come si comporta la materia allo stato iperdenso e come si comporta la forza nucleare forte, che lega le particelle subatomiche, in condizioni così critiche.


Amminoacidi levogiri nelle condriti

Un esemplare del meteorite Murchison esposto al National Museum of Natural History di Washington. Credit wikipedia

Le CONDRITI CARBONACEE sono piuttosto rare: appena i 4% di tutto il materiale meteorico che cade sulla Terra appartiene a questo tipo che si ritiene di natura cometaria. Esse contengono acqua e tracce di materiale organico, compresi spesso anche gli amminoacidi. Si pensa che le condriti siano materiale inalterato della nebulosa solare originaria.

La mattina del 28 settembre 1969, nei cieli australiani venne avvistato un luminoso bolide che esplose in tre corpi più piccoli. Nei giorni successivi molti di questi frammenti vennero recuperati intorno alla cittadina di Murchinson da cui poi questi frammenti presero il nome. Si ritiene che la meteora sia stata un frammento della cometa periodica Finlay.

Credit: wikipedia

CHIRALITÀ
Si chiama chirale la molecola che può esistere con entrambe le forme speculari che non sono sovrapponibili nello spazio tra loro, come ad esempio le due mani di un individuo o anche le sue scarpe. Il RACEMO è quando le proporzioni di entrambe le forme chirali di una molecola sono presenti in parti uguali (1:1) in una miscela.

Le analisi di laboratorio successive identificarono almeno un centinaio di amminoacidi comuni come la glicina, l’alanina e l’acido glutammico, e altri molto rari come l’isovalina all’interno dei frammenti del meteorite, una condrite carbonacea.
All’inizio la presenza in eguale quantità di amminoacidi chirali, detta racemo, fu considerata una prova incontrovertibile – e lo è tutt’ora, dell’origine extraterrestre del materiale organico, in quanto la Vita terrestre può generare ed utilizzare quasi soltanto amminoacidi chirali levogiri.
In seguito apparve che alcuni amminoacidi non erano racemici 1 pur essendo di chiara origine extraterrestre come mostravano anche le analisi isotopiche 2.

Nel marzo del 2009, i ricercatori della NASA’s Goddard Space Flight Center di Greenbelt, nel Maryland, hanno scoperto un eccesso importante di isovalina levogira in alcuni campioni di condriti carbonacee ricche di acqua.
Questa scoperta, fatta attraverso l’uso di un particolare cromatografo a fluorescenza,  potrebbe spiegare perché la Vita sulla Terra prediliga la forma levogira degli amminoacidi, suggerendo che questa peculiarità abbia avuto il suo inizio nello spazio, dove  alcune condizioni chimico-fisiche particolari negli asteroidi abbiano favorito la creazione di amminoacidi levogiri.
Gli impatti meteorici di comete e asteroidi avrebbero successivamente fornito il materiale necessario allo sviluppo della Vita dotato della caratteristica levogira alla Terra 3.

Materia pre-biotica nelle meteoriti (II parte)

Continuazione…

di Giuseppe Galletta, Dipartimento di Astronomia-Università degli Studi di Padova

Naturalmente le meteoriti arrivano sulla Terra dopo un viaggio nello spazio che può durare anche migliaia di anni. Esse possono provenire da corpi rocciosi come gli asteroidi, o da rimbalzi di frammenti lanciati via nello spazio dalla superficie di pianeti come Marte o la Luna. Le meteoriti contenenti ferro o minerali vulcanici in genere provengono dallo sbriciolamento di oggetti più grandi e hanno subito già una trasformazione dovuta al calore. L’impatto o la nascita in un vulcano hanno riscaldato così tanto il materiale da distruggere tutte le sostanze organiche e lasciando solo i minerali non volatili, che resistono ad alte temperature. Però esiste una categoria di meteoriti, le condriti carbonacee, che possiedono una percentuale fino al 20% circa di acqua e composti organici. La presenza di queste sostanze, che non resisterebbero a temperature superiori a 200 °C, indica che queste meteoriti sono ancora simili al materiale che si è condensato all’origine del Sistema Solare dalla grande nube che ha formato il Sole e i pianeti.

Missione Deep impact sulla cometa Tempel 1, 4 luglio 2005. Cortesia NASA.

Alcune condriti carbonacee come le meteoriti trovate a Murchison, Murray e Nagoya hanno mostrato già alla fine degli anni sessanta di avere al loro interno degli amminoacidi in quantità corrispondente a 15 ppm  (15 microgrammi per ogni grammo di materiale meteoritico). Il Murchison si è rivelato come una vera miniera di sostanze simili a quelle biologiche. Nel suo interno, gli autori che l’hanno studiato per anni hanno trovato 74 amminoacidi con un’abbondanza che arrivava anche a 60 ppm. Otto di questi sono uguali a  quelli che costituiscono le proteine biologiche (alanina, glicina, valina, leucina, isoleucina, prolina, acido aspartico e acido glutammico), 11 sono meno comuni e i rimanenti 55 non esistono negli esseri viventi sulla Terra. La struttura molecolare degli amminoacidi meteoritici è diversa da quelli biologici, sia per la tendenza a formare strutture ramificate piuttosto che lineari, sia per la presenza di molecole con simmetrie diverse e gruppi di atomi azotati legati in punti diversi dell’amminoacido (detti a,b,g). Nella biologia terrestre gli amminoacidi hanno sempre un’unica simmetria, denominata L, mentre quelli meteoritici hanno sia L che D. Inoltre, in alcuni di essi gli atomi di idrogeno, carbonio o azoto sono sostituiti dai loro isotopi più pesanti: il deuterio al posto dell’idrogeno, il 13C al posto del 12C e l’15N invece del 14N. Questi isotopi, nuclei con le stesse proprietà chimiche ma un neutrone in più, sono normalmente presenti nello spazio ma nella biologia terrestre al loro posto vengono selezionati gli atomi più leggeri, che nelle reazioni richiedono un minor dispendio di energia.

I mattoni della vita. Cortesia: Giuseppe Galletta.

Esistono però delle critiche a queste conclusioni sulla presenza nello spazio di amminoacidi e basi azotate, come sempre avviene quando la scienza tratta problemi che riguardano la vita. In genere una meteorite viene scoperta molto tempo dopo essere caduta sulle Terra, e manipolata da esseri umani dopo essere stata esposta alle intemperie. I batteri presenti nell’aria e nel suolo, e più in generale l’enorme varietà di sostanze depositate sul terreno dalle forme di vita terrestri, potrebbero aver contaminato i minerali depositandosi anche all’interno attraverso piccole fessure. Se così fosse, allora le sostanze trovate potrebbero derivare dalla biologia o dalla chimica terrestre. Riuscire ad escludere la contaminazione è già un’impresa difficile in un laboratorio biologico; figuriamoci per un oggetto raccolto dal terreno.

Tuttavia le differenze trovate nella struttura e nella simmetria delle molecole meteoritiche farebbero pensare ad un’origine extraterrestre. Come si è detto, la biologia terrestre tende a privilegiare alcune simmetrie e alcuni isotopi, mentre nello spazio questa selezione così speciale operata dagli esseri viventi non è attiva. E inoltre la conoscenza che abbiamo oggi sulla possibilità di generare basi azotate da una sostanza come la formammide, ampiamente presente nello spazio, rende più plausibile anche la scoperta di amminoacidi nelle condriti carbonacee. Un ulteriore supporto alla loro presenza nello spazio è stata fornita nel 2004, quando la sondaStardust della NASA ha riportato a Terra dei campioni di polvere evaporata dalla cometa Wild 2. Analizzandone la composizione i ricercatori hanno trovato anche lì alcuni amminoacidi di origine extraterrestre.

Le molecole intestellari. Cortesia: Giuseppe Galletta.

Come avrebbero fatto però questi amminoacidi ad arrivare sulla terra primordiale, nata da una miscela di materiali ad alta temperatura, e contribuire eventualmente all’origine della vita? Si è sempre obiettato che le meteoriti entrano nell’atmosfera terrestre a una tale velocità da distruggere qualsiasi sostanza complessa e utile per la biologia. Però una risposta è stata data dall’osservazione di un asteroide di pochi metri, 2008TC3, che il 7 ottobre 2008 si è sbriciolato arrivando sulla Terra facendo cadere i suoi frammenti nel deserto della Nubia (Sudan). Raccolti e analizzati in laboratorio,  essi contenevano 19 amminoacidi diversi, in quantità da 0.5 a 149 parti per miliardo, ma anche minerali formatisi ad altre temperature e pressioni durante una violenta collisione. Può accadere che piccoli frammenti di roccia, detti polvere cosmica, cadano sulla Terra a velocità così bassa da non bruciare nell’atmosfera. Alternativamente, una parte interna della meteorite o di una grande cometa potrebbe essere stata protetta dall’impatto e aver rilasciato successivamente le sostanze contenute in essa.

La scoperta di amminoacidi e basi azotate nelle meteoriti rafforza la possibilità che i pezzi necessari a generare le forme di vita terrestri si siano formati nello spazio e siano stati poi depositati negli oceani primordiali dalle decine di tonnellate di materia extraterrestre che cadono ogni giorno sulla Terra, con masse che possono andare da quella dei grani di polvere fino a enormi blocchi di roccia. Domani una meteorite ci farà scoprire senza dubbi che la materia che forma la vita proviene dallo spazio?


Giuseppe Galletta

Professore di Astrobiologia, Università di Padova

Fonte: http://www.gruppolocale.it/wp/wp-trackback.php?p=3109

Materia pre-biotica nelle meteoriti

Generalmente non faccio copia-incolla dagli altri blog, preferisco non scrivere piuttosto. Questo e il prossimo articolo sono un po’ diversi, in quanto illustrano efficacemente il messaggio che da sempre ho sostenuto anche con questo Blog che, qualora si verifichino le condizioni di contorno appropriate, la Vita sia un fenomeno piuttosto comune nel nostro Universo. Per Vita ovviamente non intendo necessariamente Vita Intelligente capace di entrare in contatto con Noi, ma più comunemente anche vita microbica, allo stato iniziale dello sviluppo o quasi. Il fatto che finora non sia stata trovata con certezza è solo che non abbiamo ancora osservato bene dappertutto.

di Giuseppe Galletta, Dipartimento di Astronomia-Università degli Studi di Padova

Formazione del disco proto-planetario. Cortesia Giuseppe Galletta.

La storia delle meteoriti che arrivano sulla Terra inizia circa 5 miliardi di anni fa, quando una nube fatta di molecole e di microscopici grani di polvere inizia a schiacciarsi su se stessa a causa del proprio “peso”. Le particelle di cui è fatta si muovono molto lentamente e la densità è così bassa che esse possono percorrere grandi distanze nello spazio vuoto senza collidere tra loro. A causa di ciò la pressione termica all’interno della nube è bassissima e la sua forza di gravità predomina, facendola contrarre. Questa contrazione aumenta la pressione – e di conseguenza la temperatura – al centro della nube, e in circa 50 milioni di anni genererà il Sole. Il materiale intorno inizierà a ruotare intorno al Sole nascente depositandosi sul piano di un disco, detto disco protoplanetario, da cui nasceranno i pianeti. Ed è in questo disco che si condensa il materiale di molti tipi di meteoriti. Esiste perciò un legame di genesi tra il gas interstellare e il materiale che si trova all’interno delle meteoriti; studiando queste ultime, possiamo avere delle informazioni preziose sull’origine del disco protoplanetario e sulla composizione del materiale interstellare. Ma esse possono darci anche delle risposte sulla possibilità che una forma di vita possa svilupparsi in un luogo diverso dal nostro pianeta. Vediamo perché.

Le osservazioni dei radiotelescopi ci hanno mostrato che nelle nubi interstellari esistono più di un centinaio di specie molecolari. Le singole molecole ruotano e vibrano anche miliardi di volte al secondo, producendo radiazione a miliardi di Hertz, osservate nel campo delle microoonde. Tra esse si è riusciti da identificarne alcune particolarmente interessanti: la formammide, gli idrocarburi policiclici aromatici, la glicoladeide (uno zucchero), persino tracce di una molecola che potrebbe essere la glicina, un amminoacido. Queste sostanze non hanno probabilmente nessun significato per la maggior parte dei lettori. Tuttavia esse sono particolarmente importanti per gli esseri viventi. Il funzionamento delle nostre cellule dipende dalle proteine, costituite da catene di amminoacidi. Trovare amminoacidi nello spazio dove non ci sono ancora né stelle né pianeti indica che i pezzi necessari alla vita si possono formare in abbondanza ed essere diffusi in tutta la Galassia. Prima di queste osservazioni si conosceva un meccanismo, scoperto da Miller nel 1952, che riusciva a formare amminoacidi in forma stabile partendo da sostanze semplici come idrogeno, ammoniaca, metano e acqua bollente. L’esperimento cercava di  riprodurre l’origine della vita sulla Terra ed era riuscito a produrre sia amminoacidi utilizzati dalle forme viventi sulla Terra che altri non “biologici”, oltre a sostanze utilizzate nel metabolismo come gli acidi lattico (per esempio, prodotto nel metabolismo muscolare), succinico (che entra nel processo della respirazione cellulare)  e l’urea (prodotta dal metabolismo animale).

Abbondanza degli elementi nella nostra Galassia. Cortesia: Giuseppe Galletta.

Anche la scoperta di formammide (formula HCONH2) nello spazio ha una particolare importanza. Essendo una molecola molto reattiva chimicamente, si è dimostrata una vera pietra filosofale nel generare basi azotate. La formammide riscaldata a 110-160 °C in presenza di ossidi metallici e su strati di minerali che simulano la polvere interstellare ha prodotto nei laboratori le basi azotate Citosina, Uracile, Timina e Adenina. Allo stesso modo è stata prodotta Ipoxantina, una molecola con proprietà molto simili a quelle dell’Adenina. Adenina, Uracile, Citosina e Guanina, legate a tre molecole di fosfato e a uno zucchero (il ribosio) formano la lunga catena dell’RNA. Una simile combinazione di quattro basi, Adenina, Timina, Citosina e Guanina, con i fosfati e un altro zucchero (il deossiribosio) costruisce la doppia elica del DNA dei viventi. Queste molecole si trovano identiche in tutte le specie terrestri, dal virus all’elefante. Un filamento di RNA come quello dei virus più semplici potrebbe essere stato il primo essere vivente sulla Terra da cui discendono tutti gli esseri viventi attuali. Perciò capire come esse si possano formare da un processo fisico-chimico semplice è molto importante per comprendere i meccanismi sull’origine della vita.

Cortesia: Giuseppe Galletta.

Non possiamo però stabilire direttamente se basi azotate e amminoacidi siano presenti nelle nubi interstellari, poiché esse non possono essere rivelate dai radiotelescopi a causa della loro struttura complessa che non permette loro di vibrare o ruotare molto velocemente senza distruggersi.. Si può ragionevolmente supporre che, se esse sono state presenti nelle nubi che hanno formato il disco protoplanetario del Sistema Solare, siano rimaste in parte incorporate nei granelli di grafite e silice che hanno formato asteroidi, pianeti e comete. Non tutte queste sostanze potevano però restare intatte nel lungo processo di formazione dei pianeti. Vicino al Sole la temperatura era così alta da distruggere una gran quantità di sostanze e  far evaporare tutti i ghiacci, mentre lontano dal Sole i minerali che si sono formati erano in grado di incorporare tantissime molecole.

Continua…

Giuseppe Galletta

Professore di Astrobiologia, Università di Padova

Fonte:  http://www.gruppolocale.it/wp/wp-trackback.php?p=3104