La nebulosa Lamantino e il suo microquasar SS 433

L’uomo ha sempre inteso scorgere figure a lui familiari in ogni dove 1, nelle nuvole come nella volta stellata, proiettandovi immagini di miti e leggende, facendo nascere così le costellazioni, così diverse da cultura e cultura eppure tutte egualmente degne di essere conosciute. Forse un giorno ve ne parlerò.  

[virtual_slide_box id=”6″]

Pensate di scorgere la figura di un lamantino – una specie di grosso tricheco senza zanne – nel cielo e ampia circa 700 anni luce, per noi grande quanto quattro lune piene, in direzione dell’Aquila. Questa è W50 2, conosciuta anche come Nebulosa Lamantino (Manatee in inglese),  il resto di una supernova esplosa almeno 20000 anni fa a 18000 anni luce dal Sole:  SNR G039.7-02.0.

Normalmente si è portati a pensare che il guscio di una supernova sia grossomodo sferico o giù di lì, eppure i resti di questa supernova dimostrano che non sia sempre così. In questo caso infatti il guscio è notevolmente alterato dai poderosi getti e dai campi magnetici emessi  dal curioso oggetto che ne è al centro: SS 433.

SS 433 3 e in realtà un sistema binario ad eclisse composto dai resti dell’antica supernova, una stella di neutroni oppure – più probabilmente – un buco nero, che risucchia materia dalla stella compagna, una vecchia stella di classe A ancora nella sequenza principale, che una volta doveva essere la componente più piccola di questo stretto sistema stellare. La materia risucchiata dall’accrettore crea un disco di accrescimento attorno al resto di supernova che dà origine a due getti perpendicolari di idrogeno ionizzato che si propagano nello spazio a velocità relativistiche: circa il 26% della velocità della luce.

La nebulosa Lamantino e la sorgente SS 433.
Credit: Il Poliedrico

Per tutte queste peculiarità SS 433 viene oggi considerato un microquasar 4, in quanto rispecchia in scala ridotta quello che le galassie attive fanno nella loro  gioventù.
L’asse di rotazione del resto di supernova non è complanare con l’asse del sistema ma inclinato di circa 20 gradi con questo. Il risultato è che l’asse di rotazione ruota di conseguenza intorno alla perpendicolare del sistema con un ciclo di 162,5 giorni. Il moto precessionale conseguente attorciglia le linee del campo magnetico del disco che si propagano nello spazio, mentre i due getti di plasma emessi spazzano lo spazio con un movimento elicoidale che disegna due coni divergenti. Tutto questo si traduce nel bizzarro spettro di SS 433 che appare contemporaneamente avvicinarsi e allontanarsi da noi, ma che in realtà è dovuto ai flussi di plasma che viaggiano in direzioni opposte.
Non solo, oltre all’effetto Doppler lo spettro di SS 433 è influenzato anche dalla relatività: sottraendo infatti gli effetti dello spostamento Doppler rimane una componente di spostamento verso il rosso corrispondente ad una velocità di circa 12000 chilometri al secondo. Questa non rappresenta l’effettiva velocità di recessione di SS 433, ma è dovuta dalla dilatazione temporale che si manifesta alle velocità relativistiche dei getti dove, per le componenti del plasma e di conseguenza anche per la radiazione da loro emessa, il tempo scorre più lentamente.
E sono appunto questi getti a deformare la sfericità del guscio e a farla somigliare più alla figura abbastanza familiare di un lamantino che riposa.

Ecco spiegata quindi la strana forma della Nebulosa Lamantino e il curioso microquasar che ne è al centro.


Nebulosa Tarantola

 

Il Cacciatore, le Iadi e Pleiadi, Giove e Venere

Il Cacciatore, le Iadi e Pleiadi, Giove e Venere

Immaginate di venire teleportati su un mondo nella Grande Nube di Magellano, un pianeta distante 1300-1500 anni luce 1  dalla Nebulosa Tarantola.
Il cielo di questo mondo sarebbe ricoperto per metà da questo scrigno composto da nubi ad emissione riscaldate da giovani e massiccie stelle blu e da resti di antiche supernovae 2 e solcato da strisce di polveri e gas neutro che nascondono alla vista nuove stelle che stannno per nascere.
Su quel  mondo la notte perderebbe il significato che conosciamo: potreste osservare per intero tutta la Via Lattea, compreso il fulgido nucleo centrale composto da milioni di soli alla cui luce potreste riuscire a leggere anche un libro.

Chissà che noia il giorno illuminato da un solo astro!


La Nebulosa Polletto

 

 

 

Osservate questa meravigliosa immagine della Nebulosa Lambda Centauri, nota anche come IC 2944.
L’Osservatorio europeo meridionale (ESO) ha pubblicato questa immagine di oggi (21 settembre 2011) ripresa col Wide Field Imager sul telescopio MPG/ESO da 2,2 metri a La Silla,Cile.
Si tratta di una nube di idrogeno, illuminata da calde stelle appena nate nella costellazione del Centauro.

Qualcuno ci vede la testa di un rosso polletto,  voi?

Kn 61 la nebulosa planetaria giusta al posto giusto

Se ci soffermiamo al significato delle parole professionista – colui che esercita una professione intellettuale o comunque un’attività per cui occorre un titolo di studio qualificato  – e il dilettante – colui che pratica un’attività o si dedica a uno studio non per professione ma per amore della cosa in sé – forse in nessun altro campo di ricerca scientifico   la divisione tra ricercatori professionisti e dilettanti è così sottile e impalpabile. In astronomia è abbastanza comune infatti che le due categorie si sovrappongano e collaborino assieme per il progresso scientifico. Ed è infatti quello che è avvenuto anche in questo caso dove è stato chiesta la collaborazione di un gruppo un po’ particolare di astrofili per poter  confermare o confutare una teoria sulla morfologia delle nebulose planetarie che ossessiona da tempo gli astrofisici.

Credit: Osservatorio Gemini / AURA

L’astronomo dilettante austriaco Matthias Kronberger analizzando una regione del profondo cielo inserita nel Deep Sky Survey ha scoperto una nuova nebulosa planetaria  a cui ha dato il nome: Kronberger 61, o Kn 61.
Matthias Kronberg ,  fisico delle alte energie al CERN di Ginevra, è membro di un team di astrofili: i Deep Sky Hunters.
A questo team è stato chiesto da alcuni ricercatori professionisti un aiuto per analizzare la stessa porzione di cielo che attualmente è investigata dalla sonda Kepler, ed è lì che infatti sono state scoperte sei nebulose planetarie, di cui Kn 61 fa parte.

La missione Kepler della NASA analizza circa 105 gradi quadrati porzione di cielo nei pressi della costellazione del Cigno, tra Deneb (α Cyg) e Vega (α Lyr). L’intera area  è paragonabile a l’area quella di una mano tenuta a debita distanza. Il telescopio spaziale Kepler ha il compito di analizzare continuamente la luminosità di 150.000 stelle alla ricerca di  quasi impercettibili variazioni di luce. La presenza di un corpo minore compagno di una stella può provocare fluttuazioni di luminosità attraverso le eclissi. L’eventuale curva di luce ottenuta da questi sistemi stellari sarà comunque influenzata da altri fattori, quali l’albedo del corpo minore, il suo riscaldamento e le sue fasi astrali, come comunemente osserviamo nei corpi interni alla nostra orbita come Venere e Mercurio.

Le nebulose planetarie

Una stella simile al Sole, con una massa compresa tra le 0,8 e le 4 masse solari, passa circa il 90% della sua vita  (svariati miliardi di anni) nella fascia principale del diagramma Hertzsprung-Russell, fintanto che le sue reazioni nucleari interessano l’elemento principale della stella:  l’idrogeno.
Quando l’idrogeno nel nucleo finisce e la fusione si arresta, il peso stesso della stella la fa collassare innalzando le temperature del nucleo fino ad innescare la nucleosintesi del prodotto finale della reazione termonucleare precedente, in questo caso elio. Queste nuove reazioni fanno espandere la stella fino a diventare una Gigante Rossa. Finito di bruciare anche l’elio, il processo si ripete, finendo per innescare – se la massa è sufficiente – la fusione del prodotto di scarto precedente: il carbonio. Questa nucleosintesi è più energetica delle precedenti, e la pressione di radiazione risultante espelle gli strati più esterni della stella nello spazio dove formano un guscio di gas illuminato dal nucleo nudo della stella originale: una caldissima nana bianca.

Le nebulose planetarie di solito hanno forme particolari, che i ricercatori spiegano con la presenza di uno o più corpi minori che perturbano la fase di rilascio degli strati esterni della stella, mentre Kn 61 appare perfettamente simmetrica, come un perfetto palloncino.
Era proprio questo che speravano di trovare all’interno del campo osservato da Kepler, una nebulosa da poter studiare con strumenti fotometrici precisissimi come quelli della sonda Kepler da potrer confutare o meno la teoria che ritiene i corpi planetari minori quali responsabili delle stravaaganti forme delle nebulose planetarie.
Averne trovata una così perfetta come Kn 61 è un incredibile colpo di fortuna.

Orsola De Marco della Macquarie University di Sydney e del dipartimento di astrofisica dell’American Museum of Natural History che nel 2009 ipotizzò che le bizzarre forme di molte delle nebulose planetarie fossero da attribuirsi alla presenza di compagni stellari  minori o addrittura a sistemi planetari, è parte del team che attualmente sta studiando Kn 61 insieme allo scopritore austriaco Matthias Kronberg, George Jacoby del Giant Magellan Telescope e Steve Howell del team Kepler e sviluppatore di sistemi di indagine fotometrica.