Materia oscura: e se fossero anche dei buchi neri?

Rotationcurve_3 Sappiamo che la materia oscura esiste nelle galassie, perché la curva di rotazione è piatta anche a grandi distanze dal centro della galassia. La "curva di rotazione" non è altro che un grafico di quanto velocemente le stelle di una galassia ruotano in funzione della loro distanza dal centro. La gravità predice che \(V = \sqrt (GM / R)\). La "M" indica tutta la massa che è racchiusa all'interno del raggio R. Una curva di rotazione è piatta quando la velocità è costante, cioè che in qualche modo \(M / R\) è costante. Quindi questo significa che come andiamo sempre più in una galassia, la massa è in crescita anche se pare che le stelle finiscano. La naturale conseguenza se le le leggi di gravitazione sono corrette è che allora deve esserci una qualche forma di materia che non vediamo. Anche altre osservazioni cosmologiche indicano l'esistenza della materia oscura e, sorprendentemente, predicono all'incirca la stessa quantità!

Sappiamo che la materia oscura esiste nelle galassie, perché la curva di rotazione è piatta anche a grandi distanze dal centro della galassia. La “curva di rotazione” non è altro che un grafico di quanto velocemente le stelle di una galassia ruotano in funzione della loro distanza dal centro. La gravità predice che V=(GM/R). La “M” indica tutta la massa che è racchiusa all’interno del raggio R. Una curva di rotazione è piatta quando la velocità è costante, cioè che in qualche modo M/R è costante. Quindi questo significa che come andiamo sempre più in una galassia, la massa è in crescita anche se pare che le stelle finiscano. La naturale conseguenza se le le leggi di gravitazione sono corrette è che allora deve esserci una qualche forma di materia che non vediamo. Anche altre osservazioni cosmologiche indicano l’esistenza della materia oscura e, sorprendentemente, predicono all’incirca la stessa quantità!

Finora – e credo che non lo sarà ancora per diverso tempo – la reale natura della materia oscura non è stata chiarita. Non sto ancora a ripetermi nello spiegare per filo e per segno come si sia arrivati a concludere che molta materia che percepiamo è in realtà una frazione di quella che gli effetti gravitazionali (curve di rotazione delle galassie) mostrano.
Se avete letto il mio articolo su quante stelle ci sono nella nostra galassia [cite]http://ilpoliedrico.com/2015/12/quante-stelle-ci-sono-nella-via-lattea.html[/cite] lì spiego che a concorrere alla massa totale di una galassia ci sono tante componenti barioniche (cioè composte da protoni e neutroni) più gli elettroni che non sono solo stelle. Ci sono anche corpi di taglia substellare, pianeti erranti, stelle degeneri e buchi neri di origine stellare, il risultato cioè della fine di enormi stelle  che dopo essere esplose come supernova hanno lasciato sul campo nuclei con una massa compresa tra le 3 e le 30 masse solari, tra i 9 e i 90 km di raggio. Questi oggetti non sono direttamente osservabili perché non emettono una radiazione rilevabile, ma i cui effetti gravitazionali sono ben visibili quando si studiano le quantità di moto di galassie e ammassi di queste rispetto al centro di gravità comune.
Obbiettivamente stimare la massa barionica non visibile di una galassia è molto difficile ma se prendiamo come esempio  il Sistema Solare il 99,8% dell’intera sua massa è nel Sole, una stella. Anche decidendo di considerare che la materia barionica non direttamente osservabile fosse un fattore dieci o venti volte più grande di quella presente nel Sistema Solare ed escludendo a spanne tutta la materia stellare degenere (nane bianche, stelle di neutroni e buchi neri) non più visibile presente in una tipica galassia come la nostra, in numeri ancora non tornano.
Più o meno tutte le galassie pare siano immerse in una tenue bolla di gas caldissimo grande circa cinque o sei volte la galassia stessa, probabilmente frutto del vento stellare galattico e dei processi parossistici dei nuclei galattici. Queste bolle sono impalpabili e caldissime a tal punto che solo da poco ne è stata avvertita la presenza [cite]http://hubblesite.org/newscenter/archive/releases/2011/37/[/cite], capaci quanto basta però per contenere una massa pari alla parte visibile; questo significa che finora la massa barionica di una galassia è stata finora sottostimata di un fattore 2.
Ma tutto questo ancora non basta. Anche se volessimo comunque raddoppiare o perfino triplicare le stime precedenti della massa barionica, verrebbe fuori che comunque una frazione ancora piuttosto cospicua di massa manca all’appello: almeno tra i due terzi e la metà mancherebbero comunque all’appello.
grafico universoE sulla natura di questa materia oscura (oscura appunto perché non visibile direttamente o indirettamente tranne che per la sua presenza come massa) che si sono avanzate le più disparate ipotesi.
Una di queste prevede che se, come molti esperimenti mostrano [cite]http://ilpoliedrico.com/2013/02/la-stupefacente-realta-del-neutrino.html[/cite], che i neutrini hanno una massa non nulla, allora questi potrebbero essere i responsabili della massa mancante. Questa si chiama Teoria WIMP (Weakly Interacting Massive Particle) Calda, cioè particelle debolmente interagenti dotate di massa che si muovono a velocità relativistiche. Particelle così sono note da sessant’anni, sono i neutrini che, grazie alla loro ridotta sezione d’urto e alla loro incapacità di  interagire con la forza nucleare forte (quella che cioè tiene uniti i quark e il nucleo degli atomi) e l’interazione elettromagnetica – però interagiscono bene con la forza nucleare debole (quella responsabile del decadimento radioattivo) e la forza gravitazionale – sono esattamente elusivi quanto si chiede alla materia oscura. Purtroppo se la materia oscura si identificasse unicamente nei neutrini avremmo un grande problema: forse non esisteremmo! Tutte le strutture di scala fine, le galassie e quindi le stelle, non avrebbero avuto modo di formarsi, disperse dai neutrini e dall’assenza di zone di più alta densità verso cui concentrarsi. Pertanto la Hot Dark Matter –  Materia Oscura Calda – non può essere stata rilevante alla formazione dell’Universo [cite]https://arxiv.org/abs/1210.0544[/cite].
Quindi se la materia oscura non può avere una rilevante componente calda, cioè che si muove a velocità relativistiche come i neutrini, deve essere prevalentemente fredda, cioè che, come la materia ordinaria, è statica. Una possibile spiegazione al mistero della materia oscura fa ricorso a oggetti barionici oscuri, che cioè non emettono una radiazione percettibile ai nostri strumenti, i cosiddetti MACHO (Massive Astrophysical Compact Halo Object) ossia oggetti compatti di alone. Questi MACHO sono composti da resti di stelle ormai morte come nane bianche e stelle di neutroni ormai freddi, buchi neri, stelle mancate e pianeti erranti. Certamente oggetti simili esistono e sono una componente importante della massa di qualsiasi galassia e più queste invecchiano più la componente degenere che contengono aumenta. L’indice di colore delle galassie associato alla loro massa viriale lo dimostra. Ma tutta la componente barionica dell’Universo può essere calcolata anche usando il rapporto tra gli isotopi dell’elio 4He e litio  7Li usciti dalla nucleosintesi cosmica iniziale come descritto dai modelli ΛCDM e questo pone un serio limite alla quantità di materia barionica degenere possibile [cite]http://xxx.lanl.gov/abs/astro-ph/0607207[/cite]. Pertanto risolvere il dilemma della materia oscura ricorrendo ai MACHO è impossibile.
Le uniche altre vie percorribili paiono essere quelle che fanno ricorso a particelle non barioniche (come i neutrini) ma che siano statiche come la materia barionica ordinaria: le cosiddette Cold WIMP, ovvero particelle debolmente interagenti dotate di massa non dotate di moto proprio è appunto una di queste. Particelle simili non sono ancora state osservate direttamente ma la cui esistenza può anch’essa essere dimostrata indirettamente confrontando le abbondanze isotopiche accennate prima [cite]http://arxiv.org/abs/astro-ph/9504082[/cite] con le equazioni di Friedmann.

Il pannello di destra è un'immagine ottenuta dallo Spitzer Space Telescope di stelle e galassie nella costellazione dell'Orsa Maggiore. L'immagine ad infrarossi copre una regione di spazio di 100 milioni di anni luce Il pannello di sinistra è la stessa immagine dopo che le stelle, le galassie e le altre fonti sono state mascherate. La luce di fondo rimasta risale al0 tempo in cui l'universo aveva meno di un miliardo di anni, e molto probabilmente è originata dai primissimi gruppi di oggetti dell'Universo-  grandi stelle o buchi neri attivi. Le tonalità più scure nell'immagine a sinistra corrispondono a parti più vuote dello spazio, mentre il giallo e bianco le zone più attive.

Il pannello di destra è un’immagine ottenuta dallo Spitzer Space Telescope di stelle e galassie nella costellazione dell’Orsa Maggiore. L’immagine ad infrarossi copre una regione di spazio di 100 milioni di anni luce Il pannello di sinistra è la stessa immagine dopo che le stelle, le galassie e le altre fonti sono state mascherate. La luce di fondo rimasta risale al0 tempo in cui l’universo aveva meno di un miliardo di anni, e molto probabilmente è originata dai primissimi gruppi di oggetti dell’Universo-  grandi stelle o buchi neri attivi. Le tonalità più scure nell’immagine a sinistra corrispondono a parti più vuote dello spazio, mentre il giallo e bianco le zone più attive.

Ora appare una ricerca [cite]https://arxiv.org/abs/1605.04023[/cite] che suggerisce che buona parte della parte della massa mancante sia collassata in buchi neri subito dopo il Big Bang. A riprova di questo studio viene portata la scoperta di numerose anisotropie nella radiazione cosmica infrarossa (CIB) rilevate nel corso di una survey del cielo a partire dal 2005 dal telescopio infrarosso Spitzer della NASA .
L’autore di questo studio (Kashlinsky) suggerisce che nei  primissimi istanti di vita dell’Universo (Era QCD da Quantum ChromoDynamics o Era dei Quark, tra i 10-12 secondi e i 10-6 secondi dopo il Big Bang) si siano verificate delle fluttuazioni quantistiche di densità che hanno dato origine ai buchi neri primordiali. Il meccanismo, per la verità non nuovo, è quello descritto anche da Jedamzik [cite]http://arxiv.org/abs/astro-ph/9605152[/cite] nel 1996 sui buchi neri primordiali creatisi nell’Era dei Quark. Nella sua opera Jedamskin prevede anche che a causa dell’espansione iniziale dell’Universo i buchi neri primordiali si possono essere formati solo per un ristretto intervallo di massa. Un aspetto importante che mi sento di sottolineare è che questi buchi neri primordiali non sono il prodotto del collasso gravitazionale di materia barionica come il nucleo di una stella, ma bensì il collasso di una fluttuazione di densità nel brodo di  quark e gluoni che in quell’istante stava emergendo; quindi prima della Leptogenesi e della Nucleosintesi Iniziale dell’Universo. Ma coerentemente con la fisica dei buchi neri la natura della sostanza che li ha creati  non ha alcuna importanza: che fossero orsetti gommosi o  il collasso di un nucleo stellare il risultato è il medesimo.
Finalmente Kashlinsky pare essere riuscito a trovare una prova visiva di quello che in pratica ha da sempre sostenuto, e che cioè almeno una buona parte della materia oscura possa essere spiegata da questi oggetti primordiali. Una conferma interessante a questa tesi potrebbe essere rappresentata dalla scoperta dei segnali dell’evaporazione  dei buchi neri più piccoli (1015 g) che dovrebbero essere stati generati durante l’Era dei Quark come proposto nel 2004 da BJ Carr [cite]http://arxiv.org/abs/astro-ph/0504034[/cite].
L’idea in sé quindi che buona parte della materia oscura possa essere interpretata come buchi neri primordiali non è affatto nuova. Va riconosciuto a Kashlinsky il merito di averci creduto e di aver trovato prove abbastanza convincenti per dimostrarlo. Certo il dilemma della materia oscura rimane a dispetto dei tanti annunci apparsi in questi giorni e ci vorranno ancora anni di indagine per svelarlo. Io penso che sia un ragionevole mix di tutte le idee qui proposte, anche perché l’attuale modello ΛCDM pone – come abbiamo visto – dei limiti piuttosto stringenti per l’attuale densità barionica che di fatto esclude le forme di materia convenzionale (vedi MACHO) oltre quelle già note. Anche il ruolo dei neutrini primordiali nella definizione delle strutture di scala fine dell’Universo merita attenzione, Alla fine forse scopriremo che la materia oscura è esistita fin quando non abbiamo cercato di comprenderne la sua natura.

Materia esotica per le stelle a neutroni

[latexpage]

I componenti della materia sono fatti di leptoni (come l’elettrone e i neutrini) e quark (che costituiscono protoni, neutroni ed altre particelle). I quark sono molto diversi dalle altre particelle. Oltre alla carica elettrica particolare ($\frac{1}{3}$ o $\frac{2}{3}$ quella dell’elettrone e del protone), essi possiedono infatti anche un diverso tipo di carica ​​chiamato colore. Il peculiare meccanismo in cui opera questa carica può aiutarci a far luce su alcuni oggetti astrofisici più esotici: le stelle di neutroni.

Le combinazionii di carica  colore devono produrre un colore neutro (ovvero si devono annullare) per produrre una particella libera dalla Interazione Forte.

Le combinazioni di carica colore devono produrre un colore neutro (ovvero si devono annullare) per produrre una particella libera dalla Interazione Forte.

I quark sono particelle elementari (fermioni,  cioè che obbediscono alla statistica di Fermi-Dirac e  al principio di esclusione di Pauli) che risentono dell’Interazione Forte, una delle 4 forze fondamentali. I mediatori principali di questa forza sono i gluoni, bosoni senza massa come gli analoghi del campo elettromagnetico, i fotoni. Ma a differenza di questi che non hanno carica, i gluoni sono portatori di una particolare forma di carica chiamata colore 1, per analogia al comportamento dei colori primari dello spettro visibile, non perché essi siano colorati. Per il modo in cui la forza forte agisce, è impossibile osservare un quark libero.

La carica di colore  è esapolare, composta cioè da 3 cariche (verde, rosso e blu) e 3 anticariche (anti-verde, anti-rossso e anti-blu) ) che si comportano in maniera analoga ai colori primari: quando la somma delle cariche di colore restituisce un colore neutro, come il bianco, , allora la particella composta è rilevabile. Così si possono avere particelle di colore neutro composte da tre quark con i colori verde rosso e blu chiamate barioni (i protoni e i neutroni sono i barioni più comuni), oppure particelle composte da due soli quark possessori di un colore e il suo corrispettivo anti-colore chiamate mesoni, che svolgono un ruolo importante nella coesione del nucleo atomico. Per l’interazione forte, questi sono solo i più comuni modi per ottenere un adrone. Infatti è previsto che ci siano anche altre combinazioni di carica colore per formarne una di colore neutro. Uno di questi, il tetraquark, combina fra loro quattro quark, dove due di essi hanno un colore particolare e gli altri due posseggono i corrispettivi anti-colori.

LHCb-Z (4430)

La particella$Z (4430)^-$ appare composta da un quark charm, , un anti-charm , un down e un anti-up. I  punti neri rappresentano i dati, la curva rossa il risultato della simulazione dello stato previsto per la $Z (4430)^-$. La  curva tratteggiata marrone indica quello che ci aspetterebbe  in assenza di questa. Questo dato afferma l’esistenza dell’esotica particella con 13,9 σ (cioè che il segnale è 13,9 volte più forte di tutte le possibili fluttuazioni statistiche combinate).

Segnali sull’esistenza di questo adrone esotico si ebbero nel 2007 dall’Esperimento Belle [cite]http://arxiv.org/abs/0708.1790[/cite],  che ricevette il nome di $Z (4430)^-$ 2. Ora questa particella con una massa di $4430 MeV/c^2$  (circa quattro volte quella del protone) è stata confermata dall’Esperimento LHCb di Ginevra con una significatività molto alta (13,9 $\sigma$) [cite]http://arxiv.org/abs/1404.1903v1[/cite]. Questo significa che i quark si possono combinare fra loro in modi molto più complessi di quanto finora osservato 3. Questo è un enorme passo avanti nella comprensione di come si può comportare la materia in condizioni estreme. Barioni e mesoni esotici detti glueball 4 o una miscela di questi può esistere in un solo posto in natura: nel nucleo di una stella a neutroni.

Le stelle compatte inferiori alle 1,44 masse solari sono nane bianche, stelle in cui la pressione di degenerazione degli elettroni riesce a controbilanciare la gravità. Oltre questo limite, chiamato limite di Chandrasekhar, il peso della stella supera il limite di degenerazione degli elettroni che si fondono coi protoni dando origine a una stella a neutroni 5.

quark_star (1)

Credit: NASA/Chandra

Il risultato è una stella fatta da soli neutroni dominata dalla gravità che in questo caso vince sulla repulsione elettrica. Di questo stato esotico della materia degenere non si sa molto di più delle speculazioni teoriche, ma questo potrebbe essere solo l’inizio: si calcola che la densità media delle stelle di neutroni vada da $3,7$ a $5,9 \times 10^{14} g/cm^3$ (un nucleo atomico ha una densità stimata di circa $3 \times 10^{14} g/cm^3$), con la densità passi da circa $1 \times 10^6 g/cm^3$ della superficie fino ai $6$ o $7 \times 10^{14} g/cm^3$ del loro nucleo. Come il limite di Chandrasekhar delinea il limite inferiore di una stella di neutroni, esiste un limite superiore la quale nessun’altra forza riesce ad impere il collassso gravitazionale che porta a formare un buco nero. Questo limite superiore è il limite di Tolman-Oppenheimer-Volkoff. È in questo intervallo di massa che esistono le stelle di neutroni [cite]http://www.scribd.com/doc/219247197/The-maximum-mass-of-a-neutron-star[/cite]. È probabile che solo le stelle di neutroni più leggere siano composte di neutroni degeneri, mentre man mano sale la massa verso il limite superiore la materia di neutroni degeneri ulteriormente in prossimità del nucleo e poi sempre più verso il guscio esterno in un brodo indistinto di quark tenuti insieme dalla gravità che riesce a soppiantare perfino l’interazione forte [cite]http://www.scribd.com/doc/219246949/Nuclear-equation-of-state-from-neutron-stars-and-core-collapse-supernovae[/cite]. Il tetraquark individuato dall’LHC è sicuramente solo il primo di una lunga serie di adroni esotici che può aiutare a comprendere meglio questi stati degeneri della materia che immaginiamo essere al centro di questi minuscoli e compatti resti stellari.


Note:

Segnali di Materia Oscura nei pressi del nucleo galattico

[latexpage]

Una coppia di neutralini si annichila e decade in una pioggia di normali particelle elementari. Credit: Il Poliedrico

Una coppia di neutralini si annichila e decade in una pioggia di normali particelle elementari.
Credit: Il Poliedrico

All’interno del Modello Cosmologico Standard,  la Teoria della Nucleosintesi Primordiale descrive esattamente la composizione [cite]http://www.einstein-online.info/spotlights/BBN[/cite] della materia presente nell’Universo e indica che  l’84,54% di questa è di natura non barionica, cioè non è composta da leptoni e quark ma da una forma di materia totalmente sconosciuta che non possiede alcuna carica elettromagnetica o di colore chiamata WIMP (Weakly  Interacting  Massive  Particle). Questa è una classe di nuove e ipotetiche particelle con una massa compresa tra poche decine e un migliaio di $GeV/c^2$ (un $GeV/c^2$ è circa la massa di un atomo di idrogeno). L’esistenza di queste particelle è stata proposta per risolvere il problema della materia oscura teorizzata dal Modello Cosmologico Standard. L’esistenza delle WIMP non è stata ancora provata con certezza, però alcune delle caratteristiche fondamentali che queste particelle dovrebbero possedere indicano in quale direzione cercare.
L’esistenza stessa delle strutture a piccola scala come le galassie e gli ammassi di galassie esclude che da una fase inizialmente isotropa come quella descritta dalla radiazione cosmica di fondo queste si siano potute evolvere; la presenza di massicce quantità di materia oscura calda ($v >95\%  c$) avrebbe finito invece per dissolverle. Per questo, non escludendone a priori l’esistenza 1, l’esistenza di una sola forma di materia oscura calda è dubbia. A questo punto non resta che ipotizzare una forma di materia oscura che si muove a velocità non relativistiche, fino all’1 per cento di quella della luce.
Il problema nasce con il Modello Standard che non prevede altre forme di materia se non quelle finora conosciute. Per ovviare a questo inconveniente e ad altri problemi irrisolti dal Modello Standard 2 sono state elaborate dozzine di teorie alternative dette Beyond the Standard Model (BSM, ovvero oltre il Modello Standard) che propongono soluzioni – almeno in parte – i problemi menzionati nella nota e a quello oggetto di questo articolo.

[table “49” not found /]

Un po’ tutte le BSM introducono nuove particelle, una di queste è la Supersimmetria. La Supersimmetria introduce una nuova classe di particelle chiamate superpartner all’interno del classico Modello Standard. Nonostante che il tentativo di identificare questi nuovi partner supersimmetrici – sparticelle – sia per ora fallito, le BSM riescono agevolmente a risolvere i problemi che il Modello Standard non è mai riuscito a superare.
Secondo queste teorie, i fermioni, che costituiscono la materia, hanno come superpartner altrettanti bosoni che trasmettono le forze, mentre i bosoni conosciuti hanno i loro fermioni superpartner. Poiché le particelle e le loro superpartner sono di tipo opposto, il loro contributo energetico al campo di Higgs si annulla.

Dalla tabella qui accanto si nota come per ogni bosone di gauge si ha un superpartner detto gaugino, mentre per il gravitone esiste il gravitino. Il problema essenziale è nella massa di questi superpartner che, almeno in teoria, dovrebbe essere la stessa delle altre particelle normali corrispondenti. In realtà non pare così. Finora nessuno di questi partner supersimmmetrici è stato ancora mai rilevato, tant’è che è stato supposto che anche per le superparticelle sia accaduto un fenomeno di rottura di simmetria, portando di fatto ad avere dei partner supersimmetrici molto più massicci dei loro corrispondenti di quanto ci si aspettasse, oltre il migliaio di $GeV$.
I più promettenti candidati della materia oscura fredda  sono quindi i più leggeri superpartners indicati dalle BSM. Escludendo i superpartners degli elettroni e dei quark che anch’essi dispongono di carica elettrica e di colore, rimangono disponibili lo zino (il superpartner fermionico del bosone Z), il fotino e l’higgsino, tutti altrettanti fermioni 3. Queste sparticelle in sé non sono rilevabili, interagiscono solo con l’interazione debole e la gravità ma possono legarsi tra loro formando una particella esotica molto particolare: il neutralino. In quanto miscela quantistica di diverse altre sparticelle, ne possono esistere fino a 4 tipi diversi di neutralini, tutti fermioni di Majorana e senza alcun tipo di carica, il più leggero dei quali è in genere ritenuto stabile. Il fatto che i neutralini  siano fermioni di Majorana è molto importante, perché dà in qualche modo la chiave per rilevarli, se esistono. Essendo sia particelle che antiparticelle di loro stessi, esiste la possibilità che due diversi neutralini dello stesso tipo si scontrino e si annichilino di conseguenza. Il risultato è una pioggia di radiazione gamma e di altre particelle elementari come sottoprodotti, esattamente come avviene per le particelle conosciute quando si scontrano  con le loro rispettive antiparticelle [cite]http://arxiv.org/abs/0806.2214[/cite].

 Le mappe a raggi gamma prima (a sinistra) e le mappe a cui è stato sottratto il piano galattico (a destra), in unità di photons/cm2 / s / sr.I telai destra contengono chiaramente significativo eccesso centrale e spazialmente esteso, con un picco a ~ 1-3 GeV. I risultati sono mostrati in coordinate galattiche, e tutte le mappe sono state levigate da una gaussiana 0,25

Le mappe a raggi gamma prima (a sinistra) e le mappe a cui è stato sottratto il piano galattico (a destra), in unità di fotoni/cm2/s/sr.
Le immagini sulla destra mostrano un significativo eccesso centrale e spazialmente esteso, con un picco a ~ 1-3 GeV. I risultati sono mostrati in coordinate galattiche, e tutte le mappe sono state levigate da una gaussiana di 0,25°.

E dove cercare la materia oscura, questi neutralini che ne sono soltanto un aspetto di un panorama ben più ampio? Se la materia oscura è davvero sensibile alla gravità, perché non cercarla dove la gravità è più accentuata, ovvero nei pressi dei nuclei galattici e nelle stelle? Nei pressi dei buchi neri centrali i neutralini sarebbero costretti a muoversi piuttosto rapidamente sotto l’influenza gravitazionale, e quindi anche a collidere e annichilirsi con una certa facilità. Il risultato delle annichilazioni e del loro decadimento successivo dovrebbe essere così rilevabile.
Appunto questo è stato fatto, studiando i dati che in  5 anni di attività il Fermi Gamma-ray Space Telescope   ha prodotto. Un gruppo di scienziati coordinato da Dan Hooper ed altri, ha esaminando i dati forniti dal satellite riguardanti il centro della nostra galassia e creato una mappa ad alta risoluzione che si estende per 5000 anni luce dal centro della galassia nel regno dei raggi gamma [cite]http://arxiv.org/abs/1402.6703[/cite]  [cite]http://arxiv.org/abs/0910.2998[/cite].
Una volta eliminato il segnale spurio prodotto da altri fenomeni naturali conosciuti, come ad esempio le pulsar millisecondo nei pressi del centro galattico, il risultato (visibile nei riquadri di destra dell’immagine qui accanto) è interessante. Qui risalta un segnale attorno ai  31-40 $GeV$ che gli autori dello studio attribuiscono all’annichilazione di materia oscura e dei suoi sottoprocessi di decadimento per una densità di materia oscura nei pressi del centro galattico stimata attorno ai 0,3 $GeV/cm^3$.
Le dimensioni di questa bolla di materia oscura non sono note, i dati di questo studio dimostrano che fino a 5000 anni luce la distribuzione angolare della materia oscura è sferica e centrata sul centro dinamico della Via Lattea (entro ~ 0,05° da Sgr A*), senza mostrare alcun andamento preferenziale rispetto al piano galattico o la sua perpendicolare.
Questo dato non è poi lontano da quello estrapolato da Lisa Randall e Matthew Reece dell’Università di Harvard, che sostengono di aver calcolato le dimensioni e la densità di un disco di materia oscura che permea la Via Lattea [cite]http://arxiv.org/abs/1403.0576[/cite] attraverso lo studio delle periodiche estinzioni di massa avvenute sulla Terra e le tracce di impatto di meteoriti di grandi dimensioni sul nostro pianeta 4. Questo disco avrebbe un raggio di circa 10000 anni luce e una densità di una massa solare per anno luce cubico.
A questo punto potrà essere il satellite Gaia, che mappando il campo gravitazionale della Galassia, potrà accertare o meno l’esistenza di questo o di un altro disco che permea la Via Lattea.

Il lavoro del gruppo di Hooper, che per ora è solo un pre-print, è piuttosto incoraggiante nella sua tesi. Se venisse confermato, o nei dati o da altre osservazioni su altre galassie, potrebbe essere la conferma dell’esistenza della materia oscura non barionica fredda che da anni è stata ipotizzata e finora mai confermata. Intanto, altri lavori [cite]http://arxiv.org/abs/1402.2301[/cite] indicano una debole emissione nei raggi X in altre galassie proprio dove ci si aspetta di trovare le traccie dovute al decadimento del neutrino sterile, un’altra ipotetica particella non prevista dal Modello Standard.
La fine di questo modello? Non credo, semmai sarebbe più corretto parlare di un suo superamento da parte delle BSM. Così come la Meccanica Newtoniana si dimostra comunque valida fino a velocità non relativistiche, e nessuno penserebbe di sostituirla con la Relatività Generale per calcolare ad esempio l’orbita di una cometa, Il Modello Standard rimarrà valido fino a quando non sarà stata scritta una Teoria del Tutto elegante e altrettanto funzionante.


Note:

La materia oscura? Forse solo una bolla?

 Nota: il titolo non è corretto ma per ovvi motivi di indicizzazione ormai non può più essere cambiato. In verità non mi è mai neanche piaciuto anche se ormai è così e basta. Il titolo più corretto sarebbe 

La massa mancante? E se fosse in una bolla?

ringrazio chi mi ha fatto notare l’incongruenza del titolo rispetto al breve articolo. non me ne vogliate per questo. Errare humanum est …

La bolla che avvolge la Via Lattea. Bolle simili avvolgono anche le altre galassie.
Credit: NASA / CXC / M.Weiss; NASA / CXC / Ohio State / A Gupta et al

Una enorme  bolla caldissima, tra 1 e 2,5 milioni di kelvin, con un raggio di almeno 300.000 anni luce avvolge la Via Lattea. La massa di questa bolla è paragonabile da sola a tutta la massa della Galassia.
Questo è il risultato di un recente studio sui dati ripresi dal Chandra X-Ray Observatory della NASA, dell’XMM-Newton dell’ESA e il giapponese Suzaku.

Chandra ha osservato otto sorgenti extragalattiche di raggi X distanti centinaia di anni luce misurando l’assorbimento dell’ossigeno in prossimità del disco galattico, consentendo così di stimarne anche la temperatura di questa bolla.

Studi simili hanno dimostrato che bolle simili circondano anche le altre galassie con temperature che vanno tra i 100.000 e 1 milione di kelvin.
Se questi studi verranno confermarti anche da altre ricerche, l’annoso problema della massa mancante potrebbe avviarsi verso una soluzione, ma ancora ancora non basta.


Riferimenti:
http://chandra.harvard.edu/photo/2012/halo/
A huge reservoir of ionized gas around the Milky Way: Accounting for the Missing Mass? ArXiv 16 agosto 2012

Materia esotica paramagnetica

Sono molte le nozioni scientifiche che abitualmente diamo per scontate. Pensiamo che esse siano vere ovunque nell’Universo – il che è sostanzialmente vero – ma non teniamo conto che in questo ci possano essere delle condizioni limite in cui ciò che sappiamo è incompleto.

In prossimità di una stella di neutroni la materia potrebbe essere ancora più esotica di quanto si pensi. Qui il magnetismo potrebbe prevalere sull’elettrostatica che normalmente governa la dinamica molecolare.

Eppure ci siamo già passati. Alla fine del 19° secolo Lord Kelvin si diceva convinto che si era scoperto tutto lo scibile, mentre subito dopo i concetti di spazio e di tempo assoluti crollavano sotto i colpi della Relatività e l’infinitamente piccolo veniva riscritto dalla Meccanica Quantistica.
Adesso proprio nel campo del quasi infinitamente piccolo, un settore che pensavamo di conoscere bene, pare che le nostre conoscenze siano incomplete.
Trygve Helgaker dell’Università di Oslo e il suo team hanno provato a simulare al computer quello che accade alla materia quando è sottoposta a campi magnetici potentissimi che possono essere generati solo dal nucleo collassato di una stella, una nana bianca o una stella di neutroni.

I legami chimici sono quelle forze elettrostatiche che consentono agli atomi di aggregarsi  fra loro e creare quelle strutture più complesse che chiamiamo molecole.  La forza dei legami chimici varia notevolmente, ci sono i legami forti come i legami covalenti e i legami ionici, e i legami deboli, come le interazioni dipolo-dipolo, che al momento non ci interessano affatto.
Il legame più semplice conosciuto e diffuso  nell’universo, è ovvio, riguarda due atomi dell’elemento più semplice che c’è, l’idrogeno. In questo  caso si parla di molecola di idrogeno o idrogeno molecolare, simbolo H2.
Questo è un legame covalente omopolare, dove i due nuclei atomici – in questo caso due protoni, di carica elettrica positiva – condividono due elettroni – di carica elettrica negativa. La carica elettrostatica quindi è nulla e la molecola è stabile.
In questo caso gli elettroni occupano lo stesso orbitale e, per il Principio di esclusione di Pauli, hanno spin opposti.
Helgaker e il suo team, avvalendosi di complesse simulazioni computerizzate, si sono accorti che una molecola di idrogeno in presenza di enormi campi magnetici dell’ordine di 100000 Tesla, che si possono appunto trovare in prossimità di una nana bianca o una stella di neutroni, si comporta in modo alquanto bizzarro, rivelando una nuova forma del legame covalente finora sconosciuto.
In questo caso la molecola di idrogeno si orienta parallelamente alle linee del campo magnetico, e il legame chimico tra i due atomi diventa più stretto e più stabile.
Nel caso in cui uno degli elettroni venga poi eccitato fino a un livello di energia che normalmente romperebbe il legame, come ad esempio dopo aver assorbito un fotone, la molecola non fa altro che riorientarsi perpendicolarmente al campo magnetico, ma curiosamente resta intatta.

 la dinamica dei legami molecolari in un ambiente comune (in inglese).

Questo avviene perché il campo magnetico riallinea lo spin degli elettroni in una unica direzione che è normalmente sempre antiparallelo quando due elettroni occupano lo stesso orbitale. Ma il Principio di esclusione di Pauli impedisce a due elettroni identici di occupare lo stesso orbitale, per cui un elettrone è costretto a cambiare posizione e passare allo stato quantico successivo, che è però un orbitale antilegame 1.
In un ambiente normale la molecola di idrogeno si dissocierebbe quasi subito nei suoi componenti fondamentali, invece qui l’intensità del campo magnetico riesce a mantenerla curiosamente stabile. I ricercatori hanno chiamato questo nuova forma di legame legame paramagnetico.

Il legame paramagnetico consentirebbe alle molecole di idrogeno di esistere anche in ambienti estremi come lo sono le sottilissime e caldissime atmosfere di questi nuclei stellari.
Dovrebbe essere quindi possibile osservare questa nuova forma della materia  studiando gli spettri di questi oggetti ipermagnetici in cerca di una loro particolare firma nelle righe spettrali che dovrebbe essere diversa dalle altre finora conosciute, perché il riposizionamento di una molecola eccitata nel campo magnetico deve comunque lasciare una sua impronta.
Se  Helgaker e i suoi hanno ragione dovremmo rivedere le nostre conoscenze sulla materia sottoposta a condizioni estreme.
Infatti i nuclei stellari collassati non si fermano certo a generare solo – si fa per dire – 100000 Tesla: molte stelle di neutroni raggiungono campi magnetici fino a 10000 volte più intensi.
Potremmo scoprire che la materia si comporta in modo ancora diverso e più esotico, magari campi magnetici ancora più intensi di quelli fin qui studiati non si limitano ad alterare gli orbitali ma anche la dinamica dei nuclei atomici fino a creare nuovi tipi di materia non ancora conosciuti.


Materia pre-biotica nelle meteoriti (II parte)

Continuazione…

di Giuseppe Galletta, Dipartimento di Astronomia-Università degli Studi di Padova

Naturalmente le meteoriti arrivano sulla Terra dopo un viaggio nello spazio che può durare anche migliaia di anni. Esse possono provenire da corpi rocciosi come gli asteroidi, o da rimbalzi di frammenti lanciati via nello spazio dalla superficie di pianeti come Marte o la Luna. Le meteoriti contenenti ferro o minerali vulcanici in genere provengono dallo sbriciolamento di oggetti più grandi e hanno subito già una trasformazione dovuta al calore. L’impatto o la nascita in un vulcano hanno riscaldato così tanto il materiale da distruggere tutte le sostanze organiche e lasciando solo i minerali non volatili, che resistono ad alte temperature. Però esiste una categoria di meteoriti, le condriti carbonacee, che possiedono una percentuale fino al 20% circa di acqua e composti organici. La presenza di queste sostanze, che non resisterebbero a temperature superiori a 200 °C, indica che queste meteoriti sono ancora simili al materiale che si è condensato all’origine del Sistema Solare dalla grande nube che ha formato il Sole e i pianeti.

Missione Deep impact sulla cometa Tempel 1, 4 luglio 2005. Cortesia NASA.

Alcune condriti carbonacee come le meteoriti trovate a Murchison, Murray e Nagoya hanno mostrato già alla fine degli anni sessanta di avere al loro interno degli amminoacidi in quantità corrispondente a 15 ppm  (15 microgrammi per ogni grammo di materiale meteoritico). Il Murchison si è rivelato come una vera miniera di sostanze simili a quelle biologiche. Nel suo interno, gli autori che l’hanno studiato per anni hanno trovato 74 amminoacidi con un’abbondanza che arrivava anche a 60 ppm. Otto di questi sono uguali a  quelli che costituiscono le proteine biologiche (alanina, glicina, valina, leucina, isoleucina, prolina, acido aspartico e acido glutammico), 11 sono meno comuni e i rimanenti 55 non esistono negli esseri viventi sulla Terra. La struttura molecolare degli amminoacidi meteoritici è diversa da quelli biologici, sia per la tendenza a formare strutture ramificate piuttosto che lineari, sia per la presenza di molecole con simmetrie diverse e gruppi di atomi azotati legati in punti diversi dell’amminoacido (detti a,b,g). Nella biologia terrestre gli amminoacidi hanno sempre un’unica simmetria, denominata L, mentre quelli meteoritici hanno sia L che D. Inoltre, in alcuni di essi gli atomi di idrogeno, carbonio o azoto sono sostituiti dai loro isotopi più pesanti: il deuterio al posto dell’idrogeno, il 13C al posto del 12C e l’15N invece del 14N. Questi isotopi, nuclei con le stesse proprietà chimiche ma un neutrone in più, sono normalmente presenti nello spazio ma nella biologia terrestre al loro posto vengono selezionati gli atomi più leggeri, che nelle reazioni richiedono un minor dispendio di energia.

I mattoni della vita. Cortesia: Giuseppe Galletta.

Esistono però delle critiche a queste conclusioni sulla presenza nello spazio di amminoacidi e basi azotate, come sempre avviene quando la scienza tratta problemi che riguardano la vita. In genere una meteorite viene scoperta molto tempo dopo essere caduta sulle Terra, e manipolata da esseri umani dopo essere stata esposta alle intemperie. I batteri presenti nell’aria e nel suolo, e più in generale l’enorme varietà di sostanze depositate sul terreno dalle forme di vita terrestri, potrebbero aver contaminato i minerali depositandosi anche all’interno attraverso piccole fessure. Se così fosse, allora le sostanze trovate potrebbero derivare dalla biologia o dalla chimica terrestre. Riuscire ad escludere la contaminazione è già un’impresa difficile in un laboratorio biologico; figuriamoci per un oggetto raccolto dal terreno.

Tuttavia le differenze trovate nella struttura e nella simmetria delle molecole meteoritiche farebbero pensare ad un’origine extraterrestre. Come si è detto, la biologia terrestre tende a privilegiare alcune simmetrie e alcuni isotopi, mentre nello spazio questa selezione così speciale operata dagli esseri viventi non è attiva. E inoltre la conoscenza che abbiamo oggi sulla possibilità di generare basi azotate da una sostanza come la formammide, ampiamente presente nello spazio, rende più plausibile anche la scoperta di amminoacidi nelle condriti carbonacee. Un ulteriore supporto alla loro presenza nello spazio è stata fornita nel 2004, quando la sondaStardust della NASA ha riportato a Terra dei campioni di polvere evaporata dalla cometa Wild 2. Analizzandone la composizione i ricercatori hanno trovato anche lì alcuni amminoacidi di origine extraterrestre.

Le molecole intestellari. Cortesia: Giuseppe Galletta.

Come avrebbero fatto però questi amminoacidi ad arrivare sulla terra primordiale, nata da una miscela di materiali ad alta temperatura, e contribuire eventualmente all’origine della vita? Si è sempre obiettato che le meteoriti entrano nell’atmosfera terrestre a una tale velocità da distruggere qualsiasi sostanza complessa e utile per la biologia. Però una risposta è stata data dall’osservazione di un asteroide di pochi metri, 2008TC3, che il 7 ottobre 2008 si è sbriciolato arrivando sulla Terra facendo cadere i suoi frammenti nel deserto della Nubia (Sudan). Raccolti e analizzati in laboratorio,  essi contenevano 19 amminoacidi diversi, in quantità da 0.5 a 149 parti per miliardo, ma anche minerali formatisi ad altre temperature e pressioni durante una violenta collisione. Può accadere che piccoli frammenti di roccia, detti polvere cosmica, cadano sulla Terra a velocità così bassa da non bruciare nell’atmosfera. Alternativamente, una parte interna della meteorite o di una grande cometa potrebbe essere stata protetta dall’impatto e aver rilasciato successivamente le sostanze contenute in essa.

La scoperta di amminoacidi e basi azotate nelle meteoriti rafforza la possibilità che i pezzi necessari a generare le forme di vita terrestri si siano formati nello spazio e siano stati poi depositati negli oceani primordiali dalle decine di tonnellate di materia extraterrestre che cadono ogni giorno sulla Terra, con masse che possono andare da quella dei grani di polvere fino a enormi blocchi di roccia. Domani una meteorite ci farà scoprire senza dubbi che la materia che forma la vita proviene dallo spazio?


Giuseppe Galletta

Professore di Astrobiologia, Università di Padova

Fonte: http://www.gruppolocale.it/wp/wp-trackback.php?p=3109

Materia pre-biotica nelle meteoriti

Generalmente non faccio copia-incolla dagli altri blog, preferisco non scrivere piuttosto. Questo e il prossimo articolo sono un po’ diversi, in quanto illustrano efficacemente il messaggio che da sempre ho sostenuto anche con questo Blog che, qualora si verifichino le condizioni di contorno appropriate, la Vita sia un fenomeno piuttosto comune nel nostro Universo. Per Vita ovviamente non intendo necessariamente Vita Intelligente capace di entrare in contatto con Noi, ma più comunemente anche vita microbica, allo stato iniziale dello sviluppo o quasi. Il fatto che finora non sia stata trovata con certezza è solo che non abbiamo ancora osservato bene dappertutto.

di Giuseppe Galletta, Dipartimento di Astronomia-Università degli Studi di Padova

Formazione del disco proto-planetario. Cortesia Giuseppe Galletta.

La storia delle meteoriti che arrivano sulla Terra inizia circa 5 miliardi di anni fa, quando una nube fatta di molecole e di microscopici grani di polvere inizia a schiacciarsi su se stessa a causa del proprio “peso”. Le particelle di cui è fatta si muovono molto lentamente e la densità è così bassa che esse possono percorrere grandi distanze nello spazio vuoto senza collidere tra loro. A causa di ciò la pressione termica all’interno della nube è bassissima e la sua forza di gravità predomina, facendola contrarre. Questa contrazione aumenta la pressione – e di conseguenza la temperatura – al centro della nube, e in circa 50 milioni di anni genererà il Sole. Il materiale intorno inizierà a ruotare intorno al Sole nascente depositandosi sul piano di un disco, detto disco protoplanetario, da cui nasceranno i pianeti. Ed è in questo disco che si condensa il materiale di molti tipi di meteoriti. Esiste perciò un legame di genesi tra il gas interstellare e il materiale che si trova all’interno delle meteoriti; studiando queste ultime, possiamo avere delle informazioni preziose sull’origine del disco protoplanetario e sulla composizione del materiale interstellare. Ma esse possono darci anche delle risposte sulla possibilità che una forma di vita possa svilupparsi in un luogo diverso dal nostro pianeta. Vediamo perché.

Le osservazioni dei radiotelescopi ci hanno mostrato che nelle nubi interstellari esistono più di un centinaio di specie molecolari. Le singole molecole ruotano e vibrano anche miliardi di volte al secondo, producendo radiazione a miliardi di Hertz, osservate nel campo delle microoonde. Tra esse si è riusciti da identificarne alcune particolarmente interessanti: la formammide, gli idrocarburi policiclici aromatici, la glicoladeide (uno zucchero), persino tracce di una molecola che potrebbe essere la glicina, un amminoacido. Queste sostanze non hanno probabilmente nessun significato per la maggior parte dei lettori. Tuttavia esse sono particolarmente importanti per gli esseri viventi. Il funzionamento delle nostre cellule dipende dalle proteine, costituite da catene di amminoacidi. Trovare amminoacidi nello spazio dove non ci sono ancora né stelle né pianeti indica che i pezzi necessari alla vita si possono formare in abbondanza ed essere diffusi in tutta la Galassia. Prima di queste osservazioni si conosceva un meccanismo, scoperto da Miller nel 1952, che riusciva a formare amminoacidi in forma stabile partendo da sostanze semplici come idrogeno, ammoniaca, metano e acqua bollente. L’esperimento cercava di  riprodurre l’origine della vita sulla Terra ed era riuscito a produrre sia amminoacidi utilizzati dalle forme viventi sulla Terra che altri non “biologici”, oltre a sostanze utilizzate nel metabolismo come gli acidi lattico (per esempio, prodotto nel metabolismo muscolare), succinico (che entra nel processo della respirazione cellulare)  e l’urea (prodotta dal metabolismo animale).

Abbondanza degli elementi nella nostra Galassia. Cortesia: Giuseppe Galletta.

Anche la scoperta di formammide (formula HCONH2) nello spazio ha una particolare importanza. Essendo una molecola molto reattiva chimicamente, si è dimostrata una vera pietra filosofale nel generare basi azotate. La formammide riscaldata a 110-160 °C in presenza di ossidi metallici e su strati di minerali che simulano la polvere interstellare ha prodotto nei laboratori le basi azotate Citosina, Uracile, Timina e Adenina. Allo stesso modo è stata prodotta Ipoxantina, una molecola con proprietà molto simili a quelle dell’Adenina. Adenina, Uracile, Citosina e Guanina, legate a tre molecole di fosfato e a uno zucchero (il ribosio) formano la lunga catena dell’RNA. Una simile combinazione di quattro basi, Adenina, Timina, Citosina e Guanina, con i fosfati e un altro zucchero (il deossiribosio) costruisce la doppia elica del DNA dei viventi. Queste molecole si trovano identiche in tutte le specie terrestri, dal virus all’elefante. Un filamento di RNA come quello dei virus più semplici potrebbe essere stato il primo essere vivente sulla Terra da cui discendono tutti gli esseri viventi attuali. Perciò capire come esse si possano formare da un processo fisico-chimico semplice è molto importante per comprendere i meccanismi sull’origine della vita.

Cortesia: Giuseppe Galletta.

Non possiamo però stabilire direttamente se basi azotate e amminoacidi siano presenti nelle nubi interstellari, poiché esse non possono essere rivelate dai radiotelescopi a causa della loro struttura complessa che non permette loro di vibrare o ruotare molto velocemente senza distruggersi.. Si può ragionevolmente supporre che, se esse sono state presenti nelle nubi che hanno formato il disco protoplanetario del Sistema Solare, siano rimaste in parte incorporate nei granelli di grafite e silice che hanno formato asteroidi, pianeti e comete. Non tutte queste sostanze potevano però restare intatte nel lungo processo di formazione dei pianeti. Vicino al Sole la temperatura era così alta da distruggere una gran quantità di sostanze e  far evaporare tutti i ghiacci, mentre lontano dal Sole i minerali che si sono formati erano in grado di incorporare tantissime molecole.

Continua…

Giuseppe Galletta

Professore di Astrobiologia, Università di Padova

Fonte:  http://www.gruppolocale.it/wp/wp-trackback.php?p=3104