Settimana della scienza 2017

Giorni fa avevo delle faccende da sbrigare a Ciampino — per chi non è pratico dico che è vicino a Roma, poco prima di Frascati — ma essendo in netto anticipo, decido di passar a fare visita a un mio caro amico presso l’osservatorio astronomico di Monte Porzio Catone. Non conoscendo esattamente la strada, come ormai tutti siamo abituati a fare ho semplicemente digitato la località di destinazione sul navigatore satellitare dell’auto e mi sono lasciato guidare fino a destinazione.
Ecco, quello è un perfetto esempio, banale quanto volete, di applicazione pratica della ricerca scientifica di base. Quando nel 1905 un brillante e alquanto squattrinato (dovette accettare un noiosissimo lavoro all’Ufficio Brevetti di Berna per mandare avanti la famiglia) scienziato riscrisse le leggi della meccanica celeste attraverso la nota Relatività Ristretta, tutti si chiesero se avesse un senso pratico riformulare i concetti di corpi inerziali e in accelerazione, e stabilire che la velocità della luce è invariante rispetto al sistema di rifermento. Dieci anni dopo lo stesso brillante e un po’squinternato — in senso buono, ovviamente — scienziato si spinse ancora più in là riscrivendo la teoria di gravitazione e postulando il concetto di spazio-tempo. Ancora i benpensanti si chiesero se servisse a qualcosa sapere se la luce veniva deviata da una grande massa o se se il Sole fosse scomparso noi ne avremmo percepito gli effetti istantaneamente o solo dopo otto minuti. 
Non c’era, ai loro occhi, alcuna utilità pratica in questo sapere; non come l’empirica termodinamica o nelle — allora ancora nuove — leggi dell’elettromagnetismo che avevano appena regalato all’umanità le radiocomunicazioni. Eppure, se oggi possiamo andare in un posto sconosciuto o mai visitato prima qui sulla Terra, lo dobbiamo alla ricerca di base di quel ragazzotto geniale e testardo, Albert Einstein, che sognava di cavalcare un raggio di luce.
Oppure se volete stare più sul recente, non potremmo stare qui su Internet se a cavallo degli anni settanta un gruppo di ragazzotti un po’
nerd (sfigati) non avesse incominciato a trovarsi e a condividere ognuno le proprie idee ed esperienze su circuiti logici e lampadine progettati per tutt’altro che l’home computing (l’Homebrew Club), gettando così le basi per i personal computer.
Provate per un attimo ad immaginarvi di essere coloro che per primi compresero il concetto di ruota e vedere oggi un’autostrada o di fare il bagno dentro una tinozza come Archimede di Siracusa e vedere poi una immensa portaerei nucleare. Le leggi sul rotolamento dei corpi e l’idrostatica esistevano da prima della loro scoperta ma da quando ci sono diventate note abbiamo trovato miriadi di modi per sfruttarle a nostro vantaggio.

Ogni anno centinaia di eventi hanno luogo simultaneamente in Europa e nei paesi confinanti.

Source: RICERCA E INNOVAZIONE: La notte Europea dei Ricercatori 2017

La scienza e la tanto bistrattata ricerca di base sono questo, servono a scoprire e a capire oggi  per restituire a tutto il genere umano qualcosa di concreto nel futuro.  Lo scopo della prossima Settimana della Scienza in programma dal 23 al 30 settembre 2017 è proprio questo: far conoscere — e in qualche caso coinvolgere — al pubblico le più recenti conquiste e ricerche europee in ogni campo scientifico. 
Sì, europee, perché come ogni anno l’evento finale —  promosso e finanziato dalla Commissione  Europea nell’ambito del programma europeo Horizon 2020 — è la Notte Europea dei Ricercatori.
Come anticipato l’anno scorso, il titolo della Settimana della Scienza coordinata da Frascati Scienza rimane il medesimo della volta scorsa: Made in Science. Frascati Scienza si occuperà di dirigere gli avvenimenti organizzati dalla Regione Lazio, Comune di Frascati, ASI, CNR, CINECA, CREA, ESA-ESRIN, GARR, INAF, INFN, INGV, ISPRA, ISS, Sapienza Università di Roma, Sardegna Ricerche, Università di Cagliari, Università di Cassino, Università LUMSA di Roma e Palermo, Università di Parma, Università degli Studi di Roma “Tor Vergata”, Università degli Studi Roma Tre, Università di Sassari, Università della Tuscia, Astronomitaly, Associazione Tuscolana di Astronomia, Explora, G.Eco, Ludis, Osservatorio astronomico di Gorga (RM), Fondazione GAL Hassin di Isnello (PA), Sotacarbo.

Ora non vi resta che partecipare … numerosi.
Cieli sereni!

Made In Science: la settimana della scienza 2016

manifesto WEBCome è ormai consuetudine da diversi anni ormai, anche quest’anno si rinnova l’appuntamento, dal 24 al 30 settembre, con la settimana dedicata alla scienza e la ricerca europea Settimana della Scienza 2016, che culminerà come sempre con la Notte Europea dei Ricercatori – finanziata dall’Unione Europea  – il 30 settembre prossimo. 
Il titolo del tema scelto per quest’anno e per la successiva edizione del 2017, entrambe curate da Frascati Scienza, è Made In Science.
Ritengo che l’uso dell’inglese nella Terra di Dante spesso sia abusato e fuori luogo, ma in questo caso convengo col suo uso. Esso è il linguaggio universale che consente a tutti i ricercatori europei – e non – di comunicare al di là delle naturali barriere linguistiche. Usare una lingua comune risalta lo spirito europeo della settimana dedicata alla scienza.

Made in Science

Made in … è una espressione che comunemente troviamo nelle etichette di quasi tutti i prodotti con cui veniamo in contatto; indica semplicemente dove quel particolare articolo è stato prodotto o costruito. Ma significa anche altro: realizzato, concepito, etc. Science non ha bisogno di essere tradotto, significa scienza.
Purtroppo – e lo vediamo proprio in queste ore poco dopo il tragico terremoto che ha colpito ancora una volta il Centro Italia – sono tanti i casi di attacchi alla scienza legati alla sua incapacità di predire l’imprevedibile, come se questo sarebbe potuto bastare a scongiurare le perdite umane. Eppure la scienza e la sua ricerca possono fare molto nel campo della prevenzione, che è molto diverso dalla preveggenza, dal rischio sismico; quello che spesso manca in questo caso così attuale è la volontà di seguire le indicazioni che da sempre offre la scienza.
Lo stesso vale nella medicina, dove molto spesso ciarlatani e finti guaritori guadagnano gli onori di cronaca conducendo battaglie contro la medicina ufficiale (antivaccinisti, dietologi improvvisati e sciamani) finché come purtroppo sempre accade il conto è poi amaro.
Però, e questo va sempre sottolineato, la scienza da sola non basta. Occorre che tutte le sue scoperte e innovazioni siano conosciute e condivise; in altre parole, comunicate e fatte conoscere. Non basta la buona volontà dei singoli divulgatori o di poche -sempre troppo poche – testate editoriali che spesso pochi o nessuno legge, serve che la divulgazione scientifica non si fermi mai.
Quindi ben vengano iniziative come La Settimana della Scienza e il suo importante epilogo Notte Europea dei Ricercatori, curata per la parte italiana da Frascati Scienza insieme ai più importanti enti di ricerca nazionali (ASI, CNR, ENEA, ESA-ESRIN, INAF, INFN, INGV, ISS, CINECA, GARR, ISPRA, CREA, Sardegna Ricerche). Ben vengano le iniziative scolastiche, i seminari aperti al pubblico dei sempre più numerosi atenei italiani che parteciperanno a questo evento, consci però che tutto questo appena scalfisce il triste muro di gomma che i più vari ciarlatani cercano di frapporre continuamente tra la scienza e il pubblico. Esse non saranno mai abbastanza; le più diverse attività scientifiche e di ricerca non cesseranno dopo questi spettacolari eventi ma andranno avanti per promuovere e garantire negli umani limiti la sicurezza e il benessere di tutto il genere umano, occorre però anche un sano spirito critico e di apertura da parte del pubblico ogni volta che si parla di scienza.

E qui si torna al significato più profondo del titolo scelto come tema comune della settimana: Made in Science potremmo tradurlo in Realizzato nella Scienza o Concepito Scientificamente. Una garanzia che tutto quello che vi è presentato sotto questo marchio non è una stupidaggine.

L’importanza della divulgazione scientifica.

La scorsa settimana ho partecipato a una conferenza presso la Facoltà di Fisica dell’Università di Siena sui pianeti extrasolari tenuto dalla mia carissima amica – e collaboratrice di questo blog – Sabrina Masiero. Non sto a raccontare la cronaca dell’incontro, spero che presto sia disponibile l’intero filmato dell’evento, ora voglio parlare di qualcos’altro.
Sabrina è rimasta ospite qui a Siena per l’intero fine settimana, così che abbiamo avuto modo di parlare a lungo. È emerso come purtroppo spesso il ruolo di divulgazione sia considerato marginale rispetto all’altrettanto importante ruolo di ricercatore. Ovvio, fare ricerca significa accedere a fondi economici importanti, accedere a strutture all’avanguardia e progettarne di nuove; scrivere pubblicazioni, fare nuove scoperte e perché no, aspirare ad incarichi e vincere premi prestigiosi.
Vero, indubbiamente vero se si guardano le soddisfazioni personali, fare ricerca scientifica è indubbiamente gratificante, ma quella è solo la punta dell’iceberg di cosa è la scienza.
La ricerca fine a sé stessa finisce per essere autoreferenziale, oserei dire quasi inutile.  È  come scoprire un immenso tesoro e non poterlo portar via al sicuro; come scoprire un metodo banale per produrre diamanti in casa ma non poterlo usare perché altrimenti il loro valore di mercato crollerebbe a zero. La ricerca deve sempre essere accompagnata da una efficace opera di divulgazione, altrimenti non ha senso.
cosmos_saganQualche volta vengono portati alla mia attenzione opere d’ingegno di persone che – in buona fede – credono che la fisica in qualche punto è fallata e che  vada riscritta, o che, secondo loro, dovremmo aspettarci un certo risultato piuttosto che un altro in un particolare esperimento. Qualche volta trovo le loro domande legittime e degne di attenzione e altre volte, ben più spesso, mi accorgo che sono ragionamenti senza capo né coda, dove spesso si confonde la causa con l’effetto, si usano concetti assolutamente diversi ed estranei al loro contesto (un po’ come spiegare il Teorema di Pitagora con le leggi del moto lineare) e così via. Questi episodi, lungi da me causare ilarità o qualche risentimento, mi dicono invece la desolante realtà per quel che è. Mostrano che esistono persone dotate di senso critico e di passione ma che purtroppo non hanno le basi per poter giungere a qualcosa di coerente. A loro sono venute a mancare le fondamenta su cui si regge la scienza, la comunicazione e l’apprendimento. In parte accuso il sistema scolastico che qui, a parte poche eccezioni, pare schiacciato più sull’apprendimento mnemonico alla vecchia maniera che pensato per sviluppare un pensiero scientifico critico, finendo per scoraggiare tanti giovani studenti. Ma condanno senza appello anche il cortocircuito provocato di chi si balocca con l’autoreferenzialità delle sue posizioni, del “io so’ io e voi non sapete un …” di tanti soloni di cui ho accennato anche in un altro precedente pensiero [cite]http://ilpoliedrico.com/2016/04/la-fusione-dei-ghiacciai-campanilismo-antiscientifico.html[/cite].
È qui che il ruolo di divulgatore scientifico – come il mio con questo modesto blog e quello di Sabrina per conto dell’INAF –  entra in gioco. Saper parlare di scienza ad un pubblico non specialistico è fondamentale. Vuol dire creare quell’anello di congiunzione tra la ricerca scientifica più avanzata e il pubblico. Significa saper capire il linguaggio spesso criptico dei ricercatori e di adattarlo senza stravolgimenti in qualcosa di comprensibile alle persone comuni. l’astronomo americano Carl Sagan e uno dei fondatori del Progetto SETI, divenne noto presso il grande pubblico per il suo libro Cosmos che era la trascrizione letterale di una serie televisiva di documentari per la PBS da lui condotta. Egli era un valente divulgatore, grazie al suo impegno valenti scienziati come Neil deGrasse Tyson sono venuti fuori e tanti altri meno noti hanno intrapreso una carriera scientifica arricchendo così tutta l’umanità.
Saper parlare e decidere di parlare di scienza è essenziale perché la scienza non sia percepita come il male e gli scienziati non siano visti come sciamani. Parlare di scienza significa dare alle persone la capacità di ammutolire gli stolti che oggi predicano contro i vaccini o che vendono acqua zuccherata a peso d’oro con la forza della ragione ma anche gli strumenti per comprendere quello che è vero dal falso, come le bischerate delle scie chimiche rilasciate dagli aerei. Significa trasmettere il testimone della curiosità scientifica alle nuove generazioni, nuovi ricercatori e divulgatori di domani, come il Direttore dell’Osservatorio Astronomico di Siena Alessandro Marchini sta facendo con i ragazzi delle scuole superiori di qui.
Quindi non penso che essere divulgatori sia un ruolo secondario nella scienza, anzi è vero il contrario, e del compito  che mi sono ritagliato ne sono fiero.

Alla ricerca delle origini della vita

Il bacino del Sudbury in Canada è uno degli ultimi resti dei grandi bombardamenti cometari subiti dalla Terra nella sua infanzia di cui sia rimasta qualche traccia.  Il suo studio è quindi molto importante per capire cosa è davvero successo in quell’epoca così remota e come sia arrivato il nostro pianeta ad ospitare la Vita.

[showmap name=’Sudbury_basin’]
Credit: NASA & MNDM

Credit: NASA & MNDM

Nella regione dell’Ontario (Canada) esiste un cratere, ormai quasi del tutto eroso dal tempo, vecchio di 1,8 miliardi di anni. Fu una cometa di circa dieci o quindici chilometri a provocarlo, più o meno quanto si pensa che fosse stato il terribile asteroide che si suppone pose fine al dominio dei dinosauri su questo pianeta 65 milioni di anni fa. Perché vi possiate rendere conto delle dimensioni, immaginatelo grande quanto Firenze o Deimos, una luna di Marte.
Un impatto di un corpo simile oggi contro la Terra è molto più remoto che in passato, se dovesse comunque accadere esso segnerebbe la fine della nostra civiltà e probabilmente anche della nostra specie. Ma impatti simili nei primi 500 milioni di anni della Terra quasi sicuramente hanno portato gli ingredienti necessari alla vita e creato le condizioni ambientali adatte perché questa potesse formarsi e prosperare.
La comparsa della vita sulla Terra avvenne circa 3,8 – 3,4 miliardi di anni fa, ossia appena 700 milioni – un miliardo di anni dopo la sua formazione, circa alla fine del periodo conosciuto come Intenso Bombardamento Tardivo. Un periodo forse fin troppo breve per spiegare la formazione di molecole complesse come la glicina, la β-alanina, gli acidi amminobutirrici etc. che si suppone siano state i precursori della vita sul nostro pianeta. Diversi studi [cite]http://www.acs.org/content/acs/en/pressroom/newsreleases/2012/march/new-evidence-that-comets-deposited-building-blocks-of-life-on-primordial-earth.html[/cite] svolti in passato mostrano come le molecole organiche più semplici che comunemente vengono osservate nelle nubi interstellari possono essere arrivate qui sulla Terra cavalcando le comete senza distruggersi nell’impatto ma altresì trovare in questo l’energia sufficiente per formare strutture organiche , peptidi, ancora più complesse [cite]http://ilpoliedrico.com/2012/05/aminoacidi-astrostoppisti.html[/cite].

sudbury-impact1Da diverso tempo si sono sostituite le scariche elettriche dei fulmini e delle radiazioni ultraviolette delle teorie di Haldane e di Oparin con fonti energetiche più dolci e continue come le bocche idrotermali oceaniche. Lì metalli come ferro, zinco, zolfo disciolti in un ambiente acquatico ricco di energia non ionizzante, avrebbero avuto modo da fungere da catalizzatori per la creazione di molecole organiche complesse prebiotiche e, in seguito, per la vita. Le ricerche di laboratorio però mostrano che anche i luoghi di impatto cometario possono essere stati luoghi altrettanto interessanti.
Il bacino di Sudbury è ideale per verificare questa ipotesi: l’impatto cometario ha deformato la crosta fino a una profondità di ben sedici chilometri, permettendo così ai minerali di nichel, ferro e zinco di risalire dal mantello. Il cratere, inizialmente inondato dal mare subito dopo l’impatto, è poi rimasto isolato abbastanza a lungo da permettere la formazione di un sedimento spesso un chilometro e mezzo. Per i ricercatori che attualmente stanno studiando questo complesso [cite]http://www.sciencedirect.com/science/article/pii/S0016703716301661[/cite] l’acqua raccolta nel cratere avrebbe quindi promosso i processi idrotermali non dissimili a quelli che vengono attualmente osservati nelle dorsali oceaniche.

Qui gli ingredienti per la creazione della vita ci sono tutti: molecole organiche semplici che vengono portate sulla Terra da una cometa e che si pensa che possano sopravvivere all’olocausto dell’impatto e trasformarsi in molecole anche più complesse; l’acqua trasportata dalla stessa cometa e dal mantello fessurato; energia prodotta dall’attività idrotermale indotta dall’impatto; metalli e solfuri pronti per fungere da catalizzatori per i processi organici immediatamente disponibili …
Insomma, un mix di condizioni ideali all’abiogenesi iniziale possono essersi create già nei primissimi milioni di anni di vita della Terra.

La curiosa storia della curva di luce di KIC8462852, Alieni? Non credo

Immagine artistica della pulsar PSR B1257+12 con i pianeti. Credit: Wikipedia

Immagine artistica della pulsar PSR B1257+12 con i pianeti. Credit: Wikipedia

Come avevo scritto nel mese scorso e poi successivamente su un mio post sulla piattaforma di giornalismo sociale Medium.com, che peraltro vi invito a seguire, la storia di  KIC 8462852 (intanto soprannominata  Tabby’s Star (Stella di Tabby), in onore all’astronoma Tabetha Boyajian che per prima si era impegnata in questa ricerca) rappresenta un’autentica sfida per gli astronomi e gli appassionati.
Nei giorni scorsi non si sono fatti attendere i risultati della campagna di ascolto del SETI Institute, che aveva impegnato l’Allen Telescope Array per studiare la stella alla ricerca di eventuali radiosegnali extraterrestri [cite]http://goo.gl/2fhrze[/cite] emessi da un’ipotetica struttura artificiale supposta dall’astronomo Jason Wright per spiegare le anomalie nella curva di luce dell Stella di Tabby.
Dopotutto una civiltà avvastanza evoluta da considerare di costruire uno sciame di Dyson avrebbe accesso a un livello di 1×1027 watt di energia. Anche supponendo che una piccolissima frazione fosse dedicata alle trasmissioni omnidirezionali (come ad esempio dai radiofari), questi dovrebbero comunque essere rivelabili. Purtroppo l’analisi dei dati dimostrano che tra le frequenze di 1 e 10 Ghz che dal sistema della stella non proviene alcun segnale rilevabile. Questo automaticamente non può escludere a priori l’ipotesi di Wright, in fondo la struttura potrebbe essere stata abbandonata millenni fa oppure i Costruttori usano una tecnologia diversa dalle onde elettromagnetiche per comunicare o anche più semplicemente abbiamo ascoltato le frequenze sbagliate.
Ma come l’astronomo del SETI Seth Shostak ha fatto notare, “La storia dell’astronomia ci dice che ogni volta che abbiamo pensato di aver trovato un fenomeno dovuto alle attività di extraterrestri (la storia dei Little Green Man rivelatesi poi un fenomeno assolutamente naturale – le pulsar – ne è un esempio n.d.a.), ci sbagliavamo. Ma anche se è molto probabile che lo strano comportamento di questa stella sia dovuto alla natura piuttosto che agli alieni, la prudenza chiede di controllare anche queste ipotesi.

Simulazione della rapida rotazione della stella Altair ottenuta con lo strumento MIRC del C.H.A.R.A. di Mt. Wilson. qui sono evidenti gli effetti del teorema di von Ziepel sulla relazione fra gravità superficiale e flusso radiativo di una stella.

 

rotatorMa forse il comportamento della Stella di Tabby potrebbe essere ancora più banale di quanto non si sia pensato. L’idea l’ha suggerita James Galasyn sul suo blog Desdemonadespair.net e ripresa da Paul Gilster sul suo Centauri-Dreams.
L”ipotesi, a mio avviso molto interessante, si rifà ad una serie di documenti [cite]http://goo.gl/tMTRre[/cite] [cite]http://goo.gl/82ewqR[/cite] riguardo a PTFO 8-8695b, un ipotetico pianeta supposto orbitare attorno ad una stella di pre-sequenza principale particolarmente schiacciata ai poli dalla sua alta velocità di rotazione 1. Ora la conferma di questo pianeta non sembra ancora confermata ma gli studi sulle flessioni di luce indotte hanno prodotto dei risultati molto interessanti.
Quando una stella è dotata di un moto rotatorio importante (come mostra il filmato qui sopra e l’immagine qui a fianco) la stella subisce un aumento delle dimensioni in direzione del suo equatore e uno schiacciamento dei poli dovuto alla forza centrifuga.  Dal punto di vista fisico questo comporta che in prossimità dei poli la stella appaia più luminosa che all’equatore tanto più è basso il suo periodo di rotazione; questo fenomeno si chiama Oscuramento Gravitazionale.
Senza dilungarmi troppo su questo curioso fenomeno una tipica curva di luce di un transito ha la classica forma a U più o meno pronunciata dalla distanza del piano dell’osservatore rispetto al piano dell’orbita 
e più o meno profonda dovuta alle dimensioni del pianeta rispetto alla stella [cite]http://goo.gl/RDWPKB[/cite].

Geometria della precessione nel caso di una stella oblata (in rosso) con un singolo pianeta in orbita (blu).  Le frecce indicano la direzione precessione di precessione "positivo" nella matematica. In realtà la precessione è negativo, cioè, retrograda, o in senso orario come visto da sopra il polo nord stellare.

Geometria della precessione nel caso di una stella oblata (in rosso) con un singolo pianeta in orbita (blu).  Le frecce indicano la direzione precessione di precessione “positivo” nella matematica. In realtà la precessione è negativo, cioè, retrograda, o in senso orario come visto da sopra il polo nord stellare.

Ma KIC 8462852 possiede un periodo di rotazione bassissimo, appena 21 ore, sufficienti però a distorcere significativamente la forma della stella e rendere importanti gli effetti previsti dall’oscuramento gravitazionale. Noi ancora non conosciamo la direzione dell’asse di rotazione della stella e se magari possiede un pianeta in orbita abbastanza stretta e con sufficiente massa da provocare un effetto di precessione, e né se giaccia su un piano orbitale molto diverso dalla linea dell’osservatore 2. Magari la stella possiede anche un campo magnetico piuttosto inclinato rispetto al suo asse di rotazione da provocare aperiodici episodi di hotspot o di macchie stellari persistenti lungo la linea dell’osservatore. Una combinazione di questi fattori potrebbe spiegare le irregolarità e con qualche sforzo anche l’ampiezza dei picchi negativi di luminosità come quelli registrati.

Le curve di luce estrapolate da Jason Barnes e il suo gruppo per il caso PTFO 8-8695.

Le curve di luce estrapolate da Jason Barnes e il suo gruppo per il caso PTFO 8-8695.

Anche se attorno a PTFO 8-8695 non è stato – forse ancora – rivelato alcun pianeta, i metodi di indagine e di studio del prof. Barnes possono rivelarsi preziose per risolvere il mistero delle stravaganti curve di luce della Stella di Tabby.


Note:

 

il primo volo della Orion

 
Il primo lancio della nuova capsula Orion.
Credi: NASA
Schema della Orion e il suo inserimento nell'ogiva del vettore. Credit: NASA. Fonte: Wikipedia

Schema della Orion e il suo inserimento nell’ogiva del vettore.
Credit: NASA. Fonte: Wikipedia

Con un solo giorno di ritardo sul programma, Il nuovo veicolo spaziale Orion della NASA è stato lanciato con successo ieri mattina 5 dicembre 2014 alle ore 12:05 GMT (13:05 ora italiana) dallo Space Launch Complex 37 di Cape Canaveral, Florida.
Il lancio è stato effettuato da un razzo Delta 4 Heavy della United Launch Alliance, un razzo alto ben 73 metri per un peso di 740 tonnellate.
Rispetto alle antiche capsule Gemini e Apollo, la Orion vanta dimensioni di tutto rispetto: ben 3,4 metri di altezza per 5 metri di diametro di base. Così la Orion sarà in grado di trasportare fino a sei astronauti per escursioni di tre settimane  e quattro per le missioni più lunghe.

Il volo di prova della navicella è durato appena 4 ore e mezza, il tempo di percorrere un paio di orbite raggiungendo il punto più alto a 5800 chilometri di quota, ben 14 volte di più della Stazione Spaziale Internazionale (413 km) durante la seconda.
Così è stato possibile testare la tenuta del più grande scudo termico mai costruito per una navetta, che in fase di rientro ha raggiunto i 3200 chilometri orari (0,9 m/s) e una temperatura allo scudo di 2200° Celsius. Lo scudo della Orion non è in mattonelle riciclabili come quello dello Space Shuttle che era sottoposto a temperature ben inferiori, ma di materiale ablativo, cioè che si disperde durante il rientro in atmosfera.

L’ultimo viaggio di un veicolo adatto ad accogliere astronauti oltre l’orbita bassa fu nel 1972 con l’ultima delle missioni Apollo, la 17. 

 

Il rientro della Orion

 

Omochiralità quantistica, biologica e universalità della Vita

Anche se in merito sono state fatte le diverse e più disparate ipotesi, dalla radiazione polarizzata di una supernova vicina nel periodo della nascita della vita sulla Terra fino alla radiazione di una pulsar ormai spersa e forse estinta che investiva il pianeta sempre in quei momenti, nessuna di queste è a mio avviso abbastanza libera da eventi dovuti al caso. Probabilmente l’origine dell’omochiralità levogira degli aminoacidi necessari alla vita è dovuta a fattori più fondamentali e universali. 

[latexpage]

stereochemTutti gli aminoacidi e molte altre molecole – isomeri – hanno un aspetto diverso se invertite spazialmente. Tutta la vita che conosciamo è capace di utilizzare solo una delle due immagini; in genere la versione levogira per quanto riguarda gli aminoacidi e la versione destrogira per i glucidi. Queste molecole complesse esistono in due forme speculari e non sovrapponibili dette enantiomeri  che, in base alla disposizione spaziale in tre dimensioni degli atomi, vengono definite destro o levogire per la loro capacità di ruotare il piano della luce polarizzata 1. A parte questa apparente sottigliezza, entrambi gli enantiomeri hanno sostanzialmente le stesse proprietà fisiche 2. Però, in certe reazioni o strutture, è utilizzabile solo l’una o l’altra forma. La principale funzione di particolari proteine (macromolecole biologiche formate da sequenze di aminoacidi legate tra loro) dette enzimi, è quella di catalizzare le reazioni biomolecolari, tra cui la sintesi delle altre proteine. La capacità catalitica degli enzimi dipende criticamente dalla loro struttura tridimensionale, la quale a sua volta dipende dalla direzione della sequenza degli aminoacidi. Catene sintetiche di amminoacidi formate sia da enantiomeri levogiri sia da enantiomeri destrorsi in una miscela 1:1, detta racemo, non si avvolgono nel giusto modo per produrre un’efficace attività catalitica; esse sono incapaci di formare una regolare struttura elicoidale.  Il DNA, ad esempio, è composto da basi azotate, glucidi e fosfati racchiusi in strutture chiamate nucleotidi le quali compongono la celebre doppia elica: che qui è sempre destrorsa. 
Ogni produzione spontanea 3 di aminoacidi ottenuta in laboratorio da luogo sempre a una soluzione racemica mentre le catene proteiche degli esseri viventi che conosciamo utilizzano esclusivamente forme levogire. 
Il problema dell’omichiralità degli  isomeri necessari alla vita non è mai stata risolta del tutto. Alcuni ritengono che questa sia frutto della selezione entropica naturale [cite]http://dx.doi.org/10.2174/187231308784220536[/cite] che pare favorisca la selezione delle migliori soluzioni di trasduzione dell’energia disponibili. In questo una soluzione enantiopura è decisamente migliore di una racemica, come dimostrano altri studi [cite]http://pubs.acs.org/doi/abs/10.1021/jp046478x[/cite], ma tutti questi studi pur dimostrando la necessità della vita di scegliere per l’omochiralità non spiegano perché per gli aminoacidi sia stato scelto il modello levogiro e destrogiro per gli zuccheri.
Una plausibile spiegazione viene dalle riflessioni di Frederic Vester e Tilo L. V. Ulbricht del 1957, i quali sospettarono la appena scoperta Violazione della Parità prodotta dall’Interazione Debole negli atomi [cite]10.1016/S0040-4020(01)92714-0[/cite] di essere responsabile dell’omochiralità a ogni scala. o quasi..

La simmetria P

L'interazione debole di un antineutrino elettronico con un neutrone all'interno di un nucleo atomico può spingerlo a decadere in un protone e un elettrone. Credit Il Poliedrico.

L’interazione debole di un antineutrino elettronico con un neutrone all’interno di un nucleo atomico può spingerlo a decadere in un protone e un elettrone. Credit Il Poliedrico.

In fisica si chiama Simmetria P, simmetria di trasformazione di parità 4. Quasi tutte le leggi fisiche fondamentali rispettano questa regola. L’elettromagnetismo, la forza di gravità e l’interazione nucleare forte rispettano tale simmetria, ossia sono invarianti rispetto all’inversione delle coordinate spaziali (potremmo immaginare lo stesso fenomeno come visto riflesso allo specchio procedere verso il medesimo risultato che nel mondo reale, solo che è appunto invertito spazialmente). La più debole delle quattro interazioni, l’interazione debole, invece no. Anzi è proprio lei la causa della violazione della Simmetria P.
Come dice il suo nome, l’interazione debole è veramente debole: circa 1000 volte meno intensa della forza elettromagnetica e 100 000 volte meno intensa della forza nucleare forte. L’interazione debole è responsabile sia per la fusione nucleare delle particelle subatomiche che per l’emissione di raggi beta durante il decadimento radioattivo. I raggi beta sono in realtà elettroni o positroni ad alta energia espulsi da un nucleo atomico durante il decadimento beta ($\beta$). Queste particelle hanno uno spin intrinseco e quindi, quando si muovono lungo il loro asse di spin, si possono classificare come sinistrorsi o destrorsi. La violazione della parità indica che le particelle beta emesse dai nuclei radioattivi mostrano segni evidenti di una asimmetria chirale: le particelle sinistrorse emesse durante il decadimento superano di gran lunga quelli destrorse.
Durante il decadimento beta vengono emesse anche altre particelle elettricamente neutre – il neutrino e l’antineutrino – che si propagano quasi alla velocità della luce. Come l’elettrone, l’antineutrino emesso dalla materia radioattiva ha uno spin ma, diversamente dall’elettrone, esiste solo nella forma destrorsa. Pare che nell’universo non esistano neutrini destrorsi e antineutrini sinistrorsi.

Chiralità Quantistica

wzIl Modello Standard delle particelle elementari, unisce le leggi dell’eletttromagnetismo di Maxwell e l’interazione debole in un’unica forza, l’Interazione Elettrodebole e introduce il concetto di correnti deboli cariche e le correnti deboli neutre mediate dai bosoni $W^\pm$ e $Z^0$. L’opera di queste correnti , o forze,  tra due particelle elementari dipende dalla distanza tra le particelle, dalla loro carica elettrica e dalla direzione del loro spin. L’elettrone ha una carica elettrica negativa e la forza elettrica tra due elettroni qualsiasi è sempre repulsiva. Invece, la carica debole $W$ è non nulla per un elettrone sinistrorso e nulla per uno destrorso. Quindi, un elettrone destrorso si limita semplicemente a non percepire la forza $W$. La corrente debole neutra $Z$ invece agisce sullo spin, elettroni sinistrorsi e destrorsi hanno cariche $Z$ di segno opposto e di intensità circa uguale. La differenza di segno provoca l’attrazione degli elettroni destrorsi verso il nucleo da parte della corrente $Z$ e la repulsione di quelli sinistrorsi 5 6. È per questo che il decadimento nucleare beta, dominato dalle correnti deboli, produce un eccesso di elettroni sinistrorsi. Se non fosse violata la parità, in un mondo visto allo specchio il decadimento beta produrrebbe elettroni destrorsi e la corrente debole neutra $Z$ attirerebbe verso il nucleo anche gli elettroni sinistrorsi. Questi processi non si osservano però nel mondo reale, il che è un altro modo per affermare che la forza debole è chiralmente asimmetrica e che la parità non viene conservata.

Chiralità molecolare

life

Pozze di fango, comete e sacche di polvere interstellare. Ecco dove possono nascere i mattoni della Vita. Credit: Il Poliedrico

Come conseguenza dell’interazione debole, gli atomi, finora pensati achirali, mostrano invece di possedere una distinzione tra destra e sinistra. Questa distinzione se è presente su scala atomica, potrebbe riflettersi su scale di ordine superiore? C’è da aspettarsi che anche le strutture molecolari più complesse, come ad esempio gli aminoacidi, mostrino proprietà fisiche differenti in base alla loro chiralità. L’asimmetria chirale a livello subatomico ha origine a livello fondamentale con la violazione della parità. Su scala superiore la corrente debole neutra $Z$ fa sì che che una molecola chirale abbia stati energetici diversi tra i due isomeri.
Per comprendere meglio questo meccanismo, immaginiamo una molecola chirale come un’elica o una vite e supponiamo che la corrente $Z$ non esista. Un elettrone con spin $\uparrow$ che si muove nello stesso senso dell’elica $\uparrow$ è destrorso,  mentre è sinistrorso se si muove nel senso contrario. Dal punto di vista probabilistico però dovremmo comunque aspettarci che la chiralità media degli elettroni sia nulla; però le correnti elettromagnetiche presenti nell’atomo tendono a far allineare l’asse orbitale dell’elettrone nel senso opposto al suo spin. Questo fenomeno, noto come accoppiamento spin-orbita, tende a far allineare l’elettrone nel moto opposto al suo spin in una molecola chirale destrorsa, per cui in questo caso gli elettroni tendono ad essere sinistrorsi. Invece negli enantiomeri levogiri sono gli elettroni destrorsi a prevalere. Ora tornando a prendere in considerazione anche la corrente debole neutra $Z$, che interagisce con gli elettroni  in modi dipendenti dalla loro chiralità, viene fuori che essa provoca una diversità energetica tra due enantiomeri opposti [cite]http://pubs.rsc.org/en/content/articlelanding/1983/c3/c39830000117#!divAbstract[/cite].
Come è facile intuire, l’enantiomero levogiro degli aminoacidi- che è quello biologicamente più dominante – è anche quello che possiede l’energia molecolare più bassa (gli elettroni dominanti sono destrorsi), mentre al contrario è l’enantiomero destrorso il più energetico.
Tutto questo è sostanzialmente in accordo con i principi della statistica e della termodinamica che in caso di sostanziale equilibrio è la forma con l’energia più bassa a prevalere; è stato calcolato che la discrepanza nella produzione spontanea dei due isomeri è così minuscola da passare inosservata: una parte su 10^17.
Un’altra fonte dell’omochiralità è il decadimento $\beta$. Nell’ipotesi Vester-Ulbricht si sostiene che durante il decadimento spontaneo viene emessa una debole traccia elettromagnetica, un Effetto Bremsstrahlung 7 interno all’atomo [cite]10.1016/S0031-8914(36)80008-1[/cite]. Questa emissione ha la stessa polarizzazione della particella che la emette. Per gli effetti dell’interazione elettrodebole che abbiamo visto più sopra, la maggior parte, circa l’80%, degli elettroni emessi durante il decadimento sono sinistorsi, e così è anche per la radiazione. Gli effetti della radiazione polarizzata è che essa tende a distruggere le molecole chirali dello stesso ordine, così una polarizzazione sinistrorsa tende a distruggere le molecole sinistrorse, ma il contributo della radiazione Bremsstrahlung interna è veramente molto piccolo; si calcola invece che l’interazione diretta della radiazione $\beta$ (elettroni e positroni) sui due isomeri sia comunque solo di una parte su 10^11. Un importante sostegno a questa teoria viene dai risultati di un recente studio che mostra un legame significativo  tra l’energia degli elettroni diversamente polarizzati e l’evoluzione chirale della bromocanfora [cite]http://dx.doi.org/10.1103/PhysRevLett.113.118103[/cite].
Ecco quindi sostanzialmente spiegato come mai ogni produzione spontanea di aminoacidi in laboratorio (ex. gli esperimenti di Stanley e Urey) porta sempre a una sostanziale soluzione racemica.
Ma una scappatoia al racemo c’è. Come insegna la termodinamica, un sistema chiuso tende sempre ad evolversi verso uno stato di equilibrio di minima energia, dove le concentrazioni molecolari sono definite dalla loro energia ed entropia. Trascurando la diversità energetica tra i due enantiomeri dovuta dalle correnti nucleari deboli, differenza reale ma comunque piccolissima, un sistema chiuso quindi può solo evolversi verso un sistema chiralmente simmetrico dove gli isomeri levogiri e destrorsi sono presenti in uguale proporzione. In un sistema aperto all’ingresso di nuova materia ed energia invece non è raggiungibile un equilibrio termodinamico; al suo posto accade un fenomeno chiamato rottura di simmetria, che porta alla predominanza spontanea di uno dei due enantiomeri sull’altro. Anche in questo caso gli gli stessi principi statistici e termodinamici suggeriscono che siano gli enantiomeri levogiri degli aminoacidi a prevalere.
E come la mano sinistra si intreccia meglio con la destra, anche i glucidi di conseguenza hanno subito la loro selezione: per adattarsi meglio agli aminoacidi levogiri i glucidi hanno subito un’evoluzione complementare fino a produrre strutture elicoidali destrorse, precursori del DNA.

Conclusioni

L’idea che l’omochiralità delle forme più complesse possa trarre origine dalle leggi più fondamentali della natura è veramente attraente. 
Non occorrerebbe più attendere – o dimostrare – che un sorgente di radiazioni polarizzata illumini un mondo promettente per ottenere la scintilla omochirale. Elettroni sinistrorsi prodotti dal decadimento $\beta$ di isotopi prodotti dalle supernovae sono senza dubbio un fonte universale  di radiazione polarizzata capace di condizionare gli isomeri ovunque: dagli asteroidi alle comete ghiacciate nelle nubi di Oort di di ogni sistema stellare; dai fondali di oceani alieni a pozze di fango su mondi appena formati fino ad arrivare anche alle nubi interstellari e ai globuli di Bok.
Se l’ipotesi che le radici dell’omochiralità sono nell’Interazione Elettrodebole fosse corretta, dimostrerebbe che le fondamenta della Vita sono più legate alla struttura fondamentale dell’Universo di quanto finora si pensi. Una gran bella idea!


Note:

La Settimana della Scienza e la Notte dei Ricercatori 2014

manifesto-dpi-100_1Nonostante il continuo calo degli investimenti nella scuola e nella ricerca pubblica attuato dai governi di ogni connotazione politica di questi ultimi anni in nome della sostenibilità finanziaria imposta dai vincoli europei e che pone ai ricercatori seri problemi  anche strutturali, la ricerca scientifica in Italia è ancora viva e pulsante. In aggiunta, lo spazio dedicato ad essa nel panorama mediatico italiano è alquanto scarso se non addirittura in molti casi deprimente, eppure i risultati scientifici italiani continuamente ottenuti nel panorama internazionale dimostrano la qualità, e spesso l’eccellenza, della ricerca italiana.

Nonostante tutte queste difficoltà I ricercatori italiani continuano a competere con gli altrettanto preparati ricercatori europei nei loro rispettivi campi d’interesse: fisica, matematica, medicina e biologia, tanto per citarne alcuni.

Proprio per sensibilizzare al massimo l’opinione pubblica su questi risultati è che da 9 anni viene organizzata la Settimana della Scienza (22 – 26 settembre) che terminerà con la Notte Europea dei Ricercatori (26 settembre). Tra le 5 manifestazioni italiane finanziate dalla  Commissione Europea questa, DREAMS, è risultata essere la prima classificata in Europa nell’ambito della Researcher’s Night con ben undici città coinvolte su tutto il territorio nazionale e partner scientifici tra i più autorevoli al mondo, ed è coordinata dall’Associazione Frascati Scienza. Il tema scelto per quest’anno  è la “Sostenibilità”, una parola semplice che racchiude mille problemi urgenti che richiedono di essere risolti nei prossimi anni.

  • Sostenibilità alimentare ad esempio. Questo è uno dei prossimi problemi più urgenti da risolvere. Il Riscaldamento Globale erode la qualità e la quantità dello spazio legato all’approvvigionamento  alimentare globale, procurando un argomento particolarmente sensibile per i suoi risvolti socio-economici per gli anni a venire. Strumenti di monitoraggio dallo spazio, nuovi sviluppi nelle tecnologie genetiche e agro-alimentari etc. saranno importanti per la soluzione di questo problema.
  • Sostenibilità energetica. Anche qui le crescenti difficoltà legate ai combustibili fossili richiedono uno sforzo di ricerca non indifferente. Altri schemi , altre politiche energetiche e altri modi di vivere e pensare l’energia è un’altra sfida in linea col problema della sostenibilità globale.

Questi sono solo due banali esempi  sulla complessità del tema scelto per quest’anno e che i ricercatori italiani ed europei saranno chiamati a d affrontare nei prossimi anni. Nelle undici città  durante tutta la settimana e nella nottata del 26 settembre verranno mostrati al pubblico quello che intanto è stato raggiunto finora attraverso dibattiti, convegni e mostre sia per il pubblico adulto sia per i bambini.

Maggiori informazioni sull’evento e i luoghi che ospiteranno le manifestazioni sono disponibili su
http://www.frascatiscienza.it/pagine/notte-europea-dei-ricercatori-2014

Alla ricerca del Santo Graal della fisica: la Gravità Quantistica

Oggi la scienza deve risolvere un grosso problema: esiste una teoria che descrive efficacemente il moto dei pianeti e delle stelle  chiamata Relatività Generale, ed una teoria che descrive altrettanto efficacemente il mondo microscopico chiamata Meccanica Quantistica. Entrambe nel loro raggio d’azione consentono di fare previsioni molto precise ma non possono essere usate contemporaneamente.

È tutta una questione di scala

L'Universo Viene descritto da due grandi teoremi apparentemente in contrasto tra loro. Eppure la sua isotropia e invarianza di scala dovrebbe darci la giusta chiave di lettura.

L’Universo Viene descritto da due grandi teoremi apparentemente in contrasto tra loro.
Eppure la sua isotropia e invarianza di scala dovrebbe darci la giusta chiave di lettura.

La relatività generale ci mostra uno spazio-tempo piatto e liscio, curvato  solo dalla massa e dall’energia degli oggetti che ospita. La meccanica quantistica ci mostra invece un Universo spumeggiante dominato dal Principio di Indeterminazione di Heisenberg. Quale è quindi la vera natura dell’Universo fra queste?
Possiamo immaginarci lo spazio-tempo come il mare visto da un aereo: liscio e piatto, disturbato solo dalle occasionali navi di passaggio. Ma se scendessimo sulla sua superficie, lo vedremmo mosso e spumeggiante, con un certo grado di indeterminazione che potremmo identificare col nostro stato di galleggiamento. Data la sua stazza, una nave non risente di questa incertezza, così come un oggetto macroscopico non risente della spinta indeterministica della meccanica quantistica nello spazio-tempo descritto dalla relatività. Quindi abbiamo due domini ugualmente veri che però non possiamo usare contemporaneamente per descrivere lo stesso fenomeno. Perché?
Occorre una fisica diversa, che sappia descrivere bene sia il macrocosmo relativistico dominato dalla gravità e dalla massa, che il microcosmo quantistico, dominato dal Principio di Indeterminazione. Siccome non avrebbe senso aggiungere incertezza a ciò che si è sempre finora dimostrato esatto, è necessario aggiungere la gravità alla meccanica quantistica.
Ormai è evidente a tutti che il semplice Modello Standard 1 – che non dimentichiamolo, ha saputo fin qui esprimere risultati eccellenti nella fisica delle particelle –  sta  mostrando tutti i suoi limiti alla luce delle nuove scoperte. Adesso è giunto il momento di andare oltre, di proporre una nuova teoria quantistica che aggiunga – e tenga conto – della gravità insieme alle altre tre forze di cui si era occupata finora la meccanica quantistica.

Per i fisici che studiano la materia condensata 2 è tutta una questione di dimensioni.  La descrizione che diamo di un sistema fisico dipende dalla scala in cui osserviamo. Come ho detto prima, da una quota molto alta descriveremmo il mare sotto di noi come una distesa piatta e liscia, mentre nei pressi della superficie magari staremmo assistendo ad un’onda di tsunami.
Il problema della rappresentazione di scala di solito viene risolto facendo uso di un notevole strumento matematico: il gruppo di rinormalizzazione. con questo strumento è possibile descrivere la realtà a diverse scale di interpretazione, un po’ come lo zoom di una fotocamera che permette di cogliere istantanee a scale diverse di ciò che si sta studiando.
Adesso molti ricercatori stanno tentando questa strada per vedere se attraverso i gruppi di rinormalizzazione riescono a includere una gravità coerente con la relatività generale nella meccanica quantistica.

Quella che adesso la relatività generale descrive come una distorsione spazio-temporale dovuta alla massa e che si propaga nello spazio come un’onda alla velocità della luce, forse presto sarà possibile descriverla anche con una teoria di campo che viene mediata da un bosone, proprio come le altre tre forze. Allora sarà un gran giorno per la scienza.


Note:

Altri tasselli al puzzle della massa barionica mancante.

Il quasar UM 287 illumina la più grande nube di gas mai vista nell'Universo.

Il quasar UM 287 illumina la più grande nube di gas mai vista nell’Universo.
Credit: Nature

Oltre che la genesi e l’evoluzione, l’attuale  Modello Cosmologico Standard riesce ad indicare con discreta precisione anche la composizione dell’Universo 1 [cite]http://www.einstein-online.info/spotlights/BBN[/cite].
Nel 1933 l’astrofisico svizzero Fritz Zwicky, dimostrò una importante discrepanza tra la materia visibile e la massa misurata dell’ammasso di galassie della  Chioma 2.
Quello fu solo il primo dei tanti indizi che indicavano un’importante discrepanza tra le stime teoriche basate su leggi matematiche consistenti e i dati osservati.
Purtroppo almeno la metà della materia barionica prevista teoricamente finora è apparsa sfuggire da ogni tecnica di rilevazione diretta 3 4.

Tempo fa illustrai in queste stesse pagine [cite]http://ilpoliedrico.com/2012/09/la-materia-oscura-forse-solo-una-bolla.html[/cite] che enormi bolle di gas caldo (attorno a 1 – 2 milioni di kelvin) circondano le galassie. La massa complessiva di queste bolle è paragonabile a quello attualmente stimato per le galassie al loro centro.
Adesso altri recenti studi [cite]http://pa.as.uky.edu/circumgalactic-medium-and-galaxy-missing-baryon-problem[/cite] hanno rivelato che gli aloni galattici contengono anche una forma di gas molto più freddo (10.000° kelvin).
Gas così freddi non sono direttamente visibili ai telescopi 5 ma  alcuni aloni di questi aloni è stato possibile individuarli grazie all’impronta lasciata sulla luce di lontani quasar che li attraversano.

Il 7 gennaio scorso all’American Astronomical Society è stato presentato uno studio svolto sulla luce proveniente da diversi quasar posti accanto ad altre galassie in primo piano ripresi dal Telescopio Spaziale Hubble. Gli spettri di alcuni di questi oggetti hanno mostrato la presenza di significative quantità di carbonio, silicio e magnesio insieme alla presenza rivelatrice di tracce di idrogeno neutro (H I). Secondo i ricercatori, questo indica la presenza di aloni di gas relativamente freddo che circondano le galassie osservate attraverso la luce dei quasar. Aloni di materiale circumgalattico  freddo che possono contenere importanti quantità (dalle 10 alle 100 volte superiori di quanto finora stimato) di materia ancora nascosta e non conteggiata nelle stime della massa barionica mancante. Il team che ha realizzato questo studio è guidato da  Jessica Werk, astrofisica, dell’Università della California.

Questa sezione grande 10 milioni di anni luce simulazione del primordiale mostra come la materia si fonde in galassie collegate da filamenti di gas rarefatto. Credit: Nature

Una simulazione  del gas primordiale grande 10 milioni di anni luce  mostra come la materia riesce a fondersi in galassie collegate da filamenti di gas rarefatto.
Credit: Nature

All’incirca stessa tecnica è stata usata per osservare la più grande nube di gas conosciuta nell’Universo [cite]2014.14550[/cite]. Questa nebulosa pare essere uno dei filamenti di materia a grande scala del cosmo. Potrebbe essere la prima immagine diretta della ragnatela cosmica che pervade tutto l’Universo.
Gli autori di quest’altra scoperta sono gli astronomi Sebastiano Cantalupo e Xavier Prochaska anche loro dell’Università della California, Santa Cruz, che hanno usato il Keck Observatory, posto sulla cima del vulcano Mauna Kea alle Hawaii. Le immagini mostrano una nube di gas grande 460.000 parsec (1,5 milioni di anni luce) di lunghezza.
Sempre per il Modello Cosmologico Standard, prima della formazione delle galassie, L’Universo conteneva gas primordiale frutto della bariogenesi che disaccoppiò la materia dall’energia e che vide questa prevalere sull’antimateria e materia oscura. La materia oscura, predominante sulla materia barionica ordinaria, si addensò poi in estesi aloni gravitazionali in cui la materia ordinaria sarebbe poi finita per creare le galassie.
Ma come mostrano anche le simulazioni, non tutta la materia, sia la barionica che quella oscura, è finita per creare le galassie. Anzi, molta di questa avrebbe finito per creare la ragnatela tridimensionale che pervade il cosmo che collega tutte le galassie.
In effetti i ricercatori hanno trovato prove dell’esistenza di questi filamenti chiamati WHIM (Warm-Hot Intergalactic Medium), ovvero mezzo intergalattico caldo [cite]http://ilpoliedrico.com/2013/05/il-mistero-dei-barioni-mancanti.html[/cite].

Tutte queste nuove forme di materia -barionica – finora inosservate possono essere la risposta al dilemma della massa barionica mancante? forse è presto per dirlo ma credo di sì. Questa sarebbe un’altra prova della bontà del Modello Cosmologico Standard.


 

Note: