Ciclo biochimico del fosforo su Venere?

Sono passati diversi mesi dal mio ultimo articolo qui; diciamo pure che, dopo l’uscita del mio libro, mi sono preso un periodo sabbatico dalla scrittura più impegnata. Certo che nel frattempo, nonostante il fermo dovuto alla pandemia da Covid-19, non sono stato mai in ozio, visto che sto progettando — e costruendo — la mia personale  stazione meteorologica e della qualità del cielo. Spero che presto possa presentare qui alcuni miei risultati, ma proprio oggi una notizia piuttosto importante è stata pubblicata su Nature, e di questo sento il bisogno di dire la mia.

Immagine composita di Venere dai dati della sonda spaziale Magellan della NASA e del Pioneer Venus Orbiter. Credit: NASA / JPL-Caltech

Ipotesi sulla possibile vita microbica sugli altri pianeti del Sistema Solare si sprecano: nel lontano 1967 anche il celebre scienziato Carl Sagan si cimentò nell’immaginare vita aerea sulle sommità dei pianeti giganti gassosi e di Venere.
E nel dicembre 1999, l’astrobiologo britannico Charles S. Cockell,  ipotizzò la presenza di forme di vita chemioautotrofe sulle nubi superiori di Venere[1].

Però come è noto, la superficie di Venere è inospitale per ogni forma di vita a noi nota, anche la più estrema. 460 gradi Celsius, 92 volte la pressione atmosferica della Terra, piogge di acido solforico: niente lì potrebbe sopravvivere. Eppure, sopra questo inferno, tra i 50 e 60 chilometri dalla superficie, c’è uno strato di anidride solforosa e di acido solforico sormontato da uno strato di goccioline, sempre di acido solforico, dove la temperatura e pressione sono simili agli standard terrestri, ed è anche tutto quello che noi riusciamo a vedere di Venere. È comunque un ambiente estremamente acido, dove anche la vita più estrema scoperta sulla Terra[2] potrebbe avere serie difficoltà a sopravvivere.

Il 14 settembre 2020, su Nature, è apparsa una ricerca[3] che pare dare conferma alle tante speculazioni sulla presenza di forme di vita sulla sommità delle nubi di Venere.
Prima di scendere un po’ più in dettaglio, occorre sempre tenere ben presente che quanto finora è stato scoperto è, nel migliore delle ipotesi, una flebile traccia, poco più dell’ombra di una parziale impronta digitale sul luogo di un delitto, il che significa appena un indizio.
La ricerca della vita extraterrestre nel nostro Sistema Solare è piena di indizi: molecole organiche o i loro resti, su Marte e nelle meteoriti, i pennacchi stagionali di metano marziano, l’oceano sotterraneo di Encelado, le molecole complesse di Titano e quelle scoperte nelle comete. Potrei fare un elenco della lavandaia lungo chilometri solo per citare i casi più importanti. E anche laddove sembrava certa la scoperta di altre forme di vita, come nel caso del meteorite di origine marziana ALH84001, oppure l’esperimento Labeled Release di Gilbert Levin, montato sulle sonde Viking, il dibattito Vita/non-Vita è ancora acceso.

Fosfina su Venere

La fosfina è composta da appena 3 atomi di idrogeno legati ad un singolo atomo di fosforo ( formula bruta  PH3), formando così una struttura tetraedrica, molto simile all’ammoniaca (NH3) ma molto più reattiva. Una molecola piuttosto semplice, che si ritrova anche nel materiale interstellare attorno alle stelle  ricche di carbonio e ossigeno (quindi mediamente più vecchie) e nelle atmosfere dei pianeti giganti, dove viene prodotta continuamente dalle pressioni e temperature molto alte negli strati atmosferici profondi e poi trasportata per convezione verso l’alto[4] dove degrada. In questi luoghi la fosfina non desta particolari attenzioni, perché presentano condizioni chimico-fisiche che consentono la formazione stabile di questa molecola, mentre nei pianeti rocciosi, come Venere e Terra, le superfici e le atmosfere planetarie degradano e distruggono molto rapidamente la delicata molecola.

Sulla Terra, ad esempio, le uniche fonti importanti di fosfina, (tralasciando la produzione industriale) sono i processi di scarto prodotti dal metabolismo di batteri anaerobi che si nutrono del materiale biologico in decomposizione o dai minerali fosfati.

L’evidenza di una probabile presenza di fosfine nelle nubi di Venere fu notata nel giugno 2017 dall’astrobiologa Jane Greaves durante una osservazione dal James Clerk Maxwell Telescope. Ma tale scoperta doveva in qualche modo essere confermata: poteva essersi trattato di una svista nella taratura degli strumenti o di un falso segnale.
E nel marzo 2019, attraverso la rete interferometrica dell’Atacama Large Millimeter/submillimeter Array (ALMA) è arrivata la conferma del segnale rilevato nel 2017 dal C. Maxwell1. Sono stati usati 45 telescopi puntati su Venere per tre ore ad una lunghezza d’onda di circa 1 millimetro, ossia 2000 volte più lunga della luce visibile: solo i telescopi ad alta quota (ALMA è a 5100 metri s.l.m.) possono osservare bene nell’infrarosso dalla Terra. L’elaborazione dei dati è stata molto complessa: Alma non è stato progettato per risolvere particolari minuti su sorgenti brillanti come Venere. Tuttavia la procedura di riduzione dei dati è comunque ben documentata e rimando a quello che è stato scritto nell’articolo pubblicato su Nature.

Spettro di Venere ottenuto con ALMA. Il pannello sinistro mostra lo spettro PH3 dell’intero pianeta.  Il pannello destro mostra gli spettri delle zone polari (istogramma in nero), a media latitudine (in blu) ed equatoriale (in rosso). Gli spettri sono stati sfalsati verticalmente per chiarezza, e lo spettro polare è stato collocato in velocità per ottenere un limite superiore più profondo.

Questa scoperta apre scenari molto interessanti: nella sommità delle nubi (53-61 chilometri dal suolo venusiano), nei dintorni delle Celle di Hadley2 i ricercatori hanno scoperto le deboli tracce di fosfina in ragione di 20 ppb (parti per miliardo). Il pozzo nel diagramma qui a lato mostra la riga di assorbimento della fosfina nell’atmosfera di Venere.

Il dilemma è che su Venere di fosfina non dovrebbe essercene proprio: essa è una molecola estremamente reattiva, il famoso gas di palude che dà origine ai fuochi fatui non è altri che metano e fosfina (o fosfano, che è la stessa cosa) originati dalla decomposizione di materiale organico3. Senza una fonte costante di produzione essa non potrebbe esistere a lungo su un pianeta roccioso (sui pianeti giganti invece si forma continuamente per poi degradare). Sulla Terra, l’unica fosfina naturale esistente è prodotta durante il ciclo biologico del fosforo[5] (vedi illustrazione superiore), mentre l’atmosfera ossidativa del pianeta o i minerali della superficie degradano la molecola molto rapidamente.
A questo punto diventa arduo spiegare la presenza di molecole di fosfina nell’alta atmosfera di Venere, un ambiente iperacido e bombardato dai raggi UV del Sole.  Tutti i meccanismi naturali, ovvero fulmini atmosferici, apporto da materiale meteorico, vulcanismo, non sono in grado di giustificare  una presenza costante (ricordo che la presenza della molecola è stata osservata nel 2017 col C. Maxwell Telescope e nel 2019 con ALMA) e massiccia (20 ppb) di fosfina: ad ora nessun meccanismo abiotico noto presente sui pianeti rocciosi è in grado di farlo.

Presunta origine biotica della fosfina su Venere

Eliminate all other factors, and the one which remains must be the truth. Elimina tutti gli altri fattori e quello che rimane deve essere la verità.
Sir Artur Conan Doyle, Sherlock Holmes “The Sign of the Four”, a.D. 1890

In base alle considerazioni precedenti, l’unica strada percorribile per spiegare la presenza di fosfina sulla sommità delle nubi di Venere, resta l’origine biochimica. Ma anche questa non è una via facile da percorrere.
Innanzitutto — ammesso e non concesso — che la fosfina venusiana sia di origine biologica, occorre capire come, in un’atmosfera dinamica e acida, la vita sia riuscita a perpetuarsi ed evolversi. Sulla Terra abbiamo scoperto estremofili che riescono a prosperare in condizioni estreme come quelle presenti nelle sorgenti idrotermali del vulcano Dallol, in Etiopia e che resistono benissimo agli ultravioletti, come i cianobatteri delle stromatoliti del lago salato Salar de Llamara, nella regione di Tarapaca,  nel nord del Cile.
Innanzitutto dovremmo capire come sia possibile l’esistenza di forme di vita esclusivamente aerea. Anche la Terra ha una biosfera aerea, dove microorganismi arrivano a lambire lo spazio[6] e, anche se questa biosfera pare estendersi fino gli 85 chilometri di quota  (giusto per fare un paragone, la ISS orbita a 408 km di quota), essa perlopiù risiede sospeso dentro le goccioline d’acqua nebulari e partecipa al ciclo delle precipitazioni[7]. In pratica, sulla Terra, avviene un continuo scambio di minerali e forme di vita microbica tra il suolo e l’atmosfera, basti osservare che, senza l’apporto delle sabbie dal Sahara, le Bahamas non potrebbero esistere.
Non sappiamo se il medesimo ciclo è presente anche su Venere, ma è improbabile che, se esistesse qualche forma di vita nelle sommità delle nubi del pianeta, possa resistere alle tremende condizioni fisiche presenti al suolo. L’unica alternativa è che la vita venusiana sia limitata alla mesosfera e che sia incapace di scendere al di sotto: uno strato limite che impedisce alle forme di vita microbica e le loro spore di raggiungere gli strati sottostanti dove verrebbero distrutti. Sulla Terra la copertura nuvolosa è discontinua e dinamica; su Venere, invece, è ricoperto da ben tre distinti strati di nubi: uno strato superiore, composto da piccole goccioline di acido solforico ad una quota compresa tra i 60 e 70 km; uno strato intermedio, costituito da gocce più grandi e meno numerose, collocato a 52–59 km di altitudine; e infine uno strato inferiore più denso e costituito dalle particelle più grandi, che scende fino a 48 km di quota. Al di sotto di tale livello la temperatura è talmente elevata da vaporizzare le gocce, generando una foschia che si estende fino a 31 km di quota. Quindi è ipotizzabile che su Venere siano i diversi strati chimico-fisici dell’atmosfera a impedire che l’eventuale biosfera precipiti al suolo e che il taso di riproduzione delle forme di vita che la popolano compensi le inevitabili perdite.
Inoltre, rimangono da comprendere i meccanismi cellulari di forme di vita così estreme. Le nubi di Venere sono molto più aride e acide del più acido e secco ambiente che troviamo qui sulla Terra: nelle piscine idrotermali del Dallol è l’acido solforico ad essere disciolto nell’acqua, mentre su Venere è l’acqua ad essere disciolta nel medesimo acido. Un metabolismo di tipo terrestre non sarebbe possibile su Venere: la biochimica che conosciamo, gli acidi nucleici e le proteine, i lipidi e gli zuccheri, verrebbero distrutti istantaneamente. Nel 2004 l’astrobiologo Dirk Schulze-Makuch propose che una biochimica simile alla nostra avesse imparato ad usare lo zolfo come guscio protettivo[8] (lo zolfo non è bagnato dall’acido solforico) e la fotosintesi come fonte energetica.

Ipotetico ciclo vitale venusiano.

La copertura nuvolosa su Venere è permanente, dove gli strati medi e inferiori offrono le condizioni più simili alla Terra.

Ma rimane pur sempre il problema dell’acqua: anche nelle piscine del Dallol l’acqua è sempre presente. Nel luogo più secco della Terra, il deserto di Atacama difficilmente scende sotto il 2%. Venere è però almeno 50 volte più secco del più secco luogo disponibile sul nostro pianeta. Certo, sono noti funghi e spore che si attivano con un’umidità relativa del 0,7%, ma nelle nubi di Venere questo indice scende a 0,04%. Poi c’è il problema dei nutrienti necessari a mantenere il ciclo metabolico: una importante fonte potrebbe essere la polvere meteorica che cade incessantemente sul pianeta, ad esempio, o riciclare il carbonio e l’azoto direttamente dall’atmosfera.
Per i dettagli rimando all’articolo[9] pubblicato nell’agosto di quest’anno dall’astronoma Sara Seager “The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere” a proposito di un ipotetico ciclo biologico presente su Venere.

Un meccanismo abiotico per la fosfina su Venere

Il vulcanismo venusiano come fonte della fosfina fu scartato da Jane Greaves e gli altri perché ritenevano che l’apporto di questo meccanismo non avrebbe potuto spiegare la persistente quantità osservata (20 ppb) della molecola.
Un nuovo studio[10] (comunque ora pare ritirato) firmato dal professore di Chimica Teorica e Computazionale dell’Università dello Utah  Ngoc Truong e il fisico planetario della Cornell University Jonathan I. Lunine, propone di rivalutare il ruolo del vulcanismo basaltico di Venere: una quantità di 93 chilometri cubici di lava all’anno4 potrebbero essere sufficienti a produrre solfuri a sufficienza per spiegare l’attuale presenza di fosfina nelle nubi superiori di Venere. L’analisi si basa su una presunta ripresa dell’attività vulcanica di Venere basandosi sulla scoperta di punti caldi sulla superficie del pianeta identificati dalla sonda europea Venus Express[11].
Anche ammettendo che le molecole di fosfina si degradino meno nell’atmosfera di Venere (non ci sono radicali ossidrilici (-OH) come sulla Terra) il parossismo vulcanico di Venere pare si sia concluso tra 2 milioni e 250 mila anni fa, e che ora potrebbero essere in atto perlopiù sporadiche emissioni di anidride solforosa, la quantità di fosfina nella mesosfera di Venere rimane ancora un mistero.

Conclusioni

Su Venere potrebbe esistere un meccanismo abiotico per la produzione di fosfina ancora sconosciuto sulla Terra, oppure un composto chimico potrebbe aver imitato la medesima riga spettrale per ora attribuita alla fosfina. O forse è veramente Vita, magari una vita talmente aliena alla nostra esperienza che non potremo neppure riconoscere come tale perché la sua biochimica è del tutto diversa dalla nostra.
Solo una ricerca sul campo potrà aiutarci a capire cosa succede nelle nubi più alte di Venere.

La caratterizzazione delle Super-Terre: Il ciclo geologico del carbonio

[latexpage]

Se credi che una certa cosa possa essere improbabile, almeno cerca di togliere l’impossibile e forse quello che ne rimane è potenzialmente vero.
Se un giorno riuscissimo a scoprire un’altra Terra, è altamente improbabile che questa presenti uno stadio evolutivo simile al nostro. La Terra è infatti ben lontana dall’essere un sistema statico fin dal momento della sua formazione avvenuta circa 4,6 miliardi di anni fa. Al contrario, per tutto questo tempo ha subito numerosi cambiamenti nella composizione atmosferica, nella temperatura, nella distribuzione dei continenti, senza parlare delle numerose e diverse forme di vita che l’hanno occupata. Tutti questi cambiamenti si sono riflessi nell’aspetto che potrebbe essere visto a distanze astronomiche. Ogni scenario ha avuto la sua firma caratteristica, e adesso saper riconoscere queste impronte in altri pianeti può aiutarci a capire se questi possono essere stati o esserlo nel futuro, potenzialmente abitabili.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Nel corso degli ultimi quattro anni è stato possibile scoprire parecchi pianeti nell’intervallo di massa tra 2 e 10 masse terrestri, quelli che vengono definiti  Super-Terre; alcuni di questi pianeti si vengono a trovare dentro oppure si trovano vicini alla zona di abitabilità della loro stella ospite. Recentemente sono stati annunciati nuovi pianeti delle dimensioni della nostra Terra e della nostra Luna, e questo numero sicuramente aumenterà in futuro.
Le prime statistiche hanno messo in evidenza che circa il 62% delle stelle della nostra Galassia potrebbero ospitare un pianeta delle dimensioni della nostra Terra mentre studi compiuti dalla missione Kepler della NASA indicano che circa il 16,5% delle stelle hanno almeno un pianeta delle dimensioni del nostro con periodi orbitali fino a 85 giorni.
Per poter caratterizzare queste esoterre scoperte dobbiamo prima di tutto dare uno sguardo al nostro Sistema Solare e ai suoi pianeti. La Terra è per ora l’unico pianeta conosciuto in cui esiste la vita; di conseguenza le osservazioni del nostro pianeta saranno una chiave fondamentale per lo studio e la ricerca della vita altrove.

Intanto, poter definire come un pianeta sia potenzialmente vivibile non è affatto facile, ci sono talmente tante condizioni al contorno da soddisfare che non è facile considerarle tutte. Una di queste impone che per sostenere la vita come la conosciamo, un pianeta debba permettere all’acqua di esistere allo stato liquido sulla sua superficie. Indicativamente, e forse in modo piuttosto semplicistico, spesso questa condizione viene identificata come la fascia – o zona – Goldilocks, quella zona né troppo lontana e né troppo vicina alla stella dove la radiazione consente all’acqua di esistere allo stato liquido su un pianeta. Quindi si tratta solo di un mero dato orbitale che ben poco ha a che vedere con la realtà: ad esempio, sulla Luna la presenza di ‘acqua allo stato liquido non è possibile anche se ne esiste una certa quantità allo stato solido (ghiaccio); eppure condivide con la Terra la stessa zona di abitabilità.

Quello che veramente occorre ad un pianeta perché possa essere considerato potenzialmente vivibile è un ambiente abbastanza stabile nel tempo che non sia soggetto a parossismi orbitali che periodicamente farebbero congelare o arrostire la sua superficie e un ambiente abbastanza ricco di energia da poter essere sfruttata dalle forme di vita. Se per risolvere il primo caso basta che l’eccentricità dell’orbita del pianeta sia prossima a zero, per il secondo caso il discorso si fa un attimino più complicato: occorre che la pressione ambientale consenta all’acqua di mantenere lo stato liquido in un ampio spettro di temperature e un meccanismo che garantisca che anche la temperatura sia più o meno stabile all’interno di questo intervallo 1 .

Il ciclo geologico del carbonio

Per la sua capacità di trattenere la radiazione infrarossa, l’anidride carbonica è un importante termoregolatore per la superficie di un pianeta 2.
Il modo in cui questa molecola riesce a passare dall’atmosfera al mare, al fondale marino e poi di nuovo all’atmosfera è affascinate, anche se richiede molto tempo e un prerequisito essenziale: la presenza di una tettonica a placche [cite] http://ilpoliedrico.com/2013/07/venere-e-terra-gemelli-diversi.html [/cite].

In questo ciclo alcune molecole di anidride carbonica ($CO_2$) atmosferica si disciolgono nell’acqua ($H_2O$) 3 formando acido carbonico .

CO2+H2OH2CO3

Un meccanismo molto efficace e che deve essere stato senz’altro presente fin dalle prime fasi della costituzione di una crosta solida è la pioggia. La pioggia ha anche un altro compito importante nell’evoluzione planetaria: desaturando un’atmosfera primordiale ricchissima di vapore acqueo 4 rafforza il processo di raffreddamento della superficie e facilita lo scorrimento delle prime zolle tettoniche necessarie per l’ultima fase del ciclo del carbonio.
Adesso l’acido carbonico disciolto nell’acqua è libero di dissolversi nelle rocce con cui viene a contatto, siano esse quelle esposte alle precipitazioni o i fondali marini. Una reazione che potrebbe essere piuttosto comune è la seguente, dove i silicati di calcio ($CaSiO_3$) svolgono un ruolo fondamentale nel ciclo:

CaSiO3+2H2CO3Ca2++2HCO3+H2SiO3

tutti i membri di destra, gli ioni di calcio ($Ca^{2+}$), gli ioni  di idrogenocarbonato (${2HCO_3}^{-}$) 5 e l’acido silicico ($H_2 SiO_3$) sono ancora soluzioni acquose che potrebbero finire negli oceani.
Ben presto l’idrogenocarbonato viene a trovarsi in equilibrio con l’anidride carbonica disciolta nell’acqua secondo la seguente formula:

{2HCO_3}^{-} \rightleftharpoons {CO_3}ì{2-} + H_2O + CO_2

Quando la concentrazione di ioni carbonato (${CO_3}^{2-}$) aumenta, questi interagiscono con gli ioni di calcio visti prima e precipitano sotto forma di carbonato di calcio ($CaCO_3$) creando così minerari come la calcite e l’aragonite.
Questo è solo un esempio di come il carbonio atmosferico riesca a passare dalla forma gassosa nell’aria alla forma solida nella crosta planetaria. Il ruolo fondamentale di questo meccanismo è la presenza dell’acqua come solvente che ne consente il transito.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Il risultato di questo scambio sono minerali come la calcite che testimoniano la sottrazione del carbonio dall’atmosfera e che possono finire sepolti anche molto in profondità, al di sotto delle zolle tettoniche. Da qui poi, grazie all’attività vulcanica, il carbonio intrappolato nelle rocce potrebbe tornare di nuovo nell’atmosfera.
Se il meccanismo di sottrazione del carbonio dall’atmosfera dovesse venir meno per un calo eccessivo della temperatura globale, il naturale degassamento della crosta e del mantello tramite l’attività vulcanica dovrebbe far aumentare la concentrazione di $CO_2$ atmosferica e di conseguenza la temperatura. Altresì, un aumento eccessivo della temperatura dovrebbe permettere una maggior efficienza dei meccanismi di estrazione e quindi all’abbassamento di questa 6.
Il meccanismo del ciclo geologico del carbonio è complesso e comunque i suoi tempi di risposta sono piuttosto lunghi. Penso piuttosto a come l’equilibrio tra solvente (l’acqua del pianeta) e soluto (anidride carbonica) possa già di per sé portare ad una sottrazione dei due maggiori gas serra dall’atmosfera planetaria e alla stabilizzazione verso il basso della temperatura planetaria quando le condizioni ambientali consentono l’innescarsi di questo processo.

(continua …)


Note: