A caccia di mostri: nascita delle galassie più massicce dell’Universo.

La settimana scorsa, giovedì 21 agosto 2014, il Prof. Danilo Marchesini della Tuft University di Boston (potete vedere la cartina qui in basso) è stato ospite presso l’Università di Siena per una conferenza come dal titolo.  Non perdo tempo e vi lascio subito a questa visione.
Ringrazio l’Università di Siena e la persona di Alessandro Marchini per aver reso pubblico  il video dell’incontro.

[video_lightbox_youtube video_id=”dv-j6E-p-hE” width=”640″ height=”480″ auto_thumb=”1″]
astronomy_pod

Caccia ai microrganismi marziani, le nuove ricerche sugli esperimenti Labeled Release

Gilbert V. Levin, Ph.D.

Nel lontano 1952 un brillante ingegnere sanitario inventò uno straordinario e nuovo metodo per rilevare la contaminazione microbica di acqua e cibo 1.
Nel 1958 – quando ancora andare sulla Luna era soltanto un sogno – la NASA cercava un metodo per scovare microbiche forme di vita extraterrestre.
Fu così che il metodo del dott. Levin fu scelto  – insieme ad altri – nel 1969 dalla NASA per un altisonante programma chiamato Voyager Mars che aveva lo scopo di raggiungere Marte con sonde automatiche  entro i successivi 10 anni; alla NASA pensano in grande.

Con gli anni spesso le cose cambiano nome, così il programma Voyager Mars diventò Programma Viking e il famoso metodo del dott. Levin da Gulliver 2 3 fu ribattezzato con un più prosaico  – e secondo me più brutto – “Labeled Release” (LR)  per indicare la tecnologia utilizzata.

Viking 2 Lander (2/111/976). Sullo sfondo le rocce di Utopia Planitia

In pratica l’esperimento LR nei lander Viking atterrati su Marte nel 1976 funzionava così: alcuni campioni di suolo venivano sterilizzati tramite il riscaldamento e altrettanti no. Poi a tutti questi campioni veniva aggiunto un composto nutriente contenente un isotopo particolare del carbonio facilmente rilevabile: il 14C. Qualora eventuali microrganismi marziani avessero metabolizzato il nutrimento avrebbero rilasciato una certa quantità di 14C nell’aria, mentre i campioni di suolo sterilizzati ovviamente no. In effetti la serie di esperimenti LR portati avanti nei due siti di atterraggio dei lander Viking a 4000 chilometri di distanza l’uno dall’altro produsse dei dati compatibili a una qualche attività biologica, contrariamente agli altri tre modelli sperimentali studiati per la missione 4.

Levin e la sua collaboratrice dott.sa Patricia Ann Straat, analizzarono  per almeno un decennio i dati degli esperimenti LR 5 e li ripeterono in laboratorio sulla Terra usando diversi tipi di terreno proveniente dai più disparati siti, come il suolo antartico 6. Nel 1997, dopo 21 anni dagli esprimenti marziani, altre scoperte sui batteri estremofili e nuove ipotesi sulle condizioni ambientali su Marte, dettero nuovo impulso alle ricerche del dott. Levin che pubblicò le sue conclusioni frutto di venti anni di ricerche che confermavano la scoperta delle origini biologiche dei risultati degli esperimenti LR delle sonde Viking 7.

Le valli secche nell'interno sel continente antartico sono ideali per la ricerca di microrganismi estremofili

Da allora furono fatti da altri ricercatori molti tentativi per dimostrare che i risultati degli esperimenti marziani erano frutto di semplici reazioni chimiche o fisiche tra le sostanze nutritive LR e il suolo. Nessuno tuttavia riuscì a dimostrarlo.

Il 12 aprile 2012 – quest’anno – è stato presentato un nuovo studio 8 iniziato nel 2005 che ha visto come primo firmatario il dott. Giorgio Bianciardi (biologo e medico presso l’Università di Siena, attuale vicepresidente dell’Unione Astrofili Italiani), insiema al dott. Joseph D. Miller del Dipartimento di Neurobiologia della Keck School of Medicine di Los Angeles, CA, il dott. Gilbert V. Levin dell’Arizona State University e la sua collaboratrice dott.sa Patricia Ann Straat. Questo nuovo filone di indagini sui vecchi dati degli esperimenti LR ha preso il via da una ricerca presentata nel 2003 a Madrid dal Bianciardi 9. Levin e Miller hanno fornito tutti i 16000 dati dei 9 esperimenti marziani in loro possesso (spesso ancora in forma cartacea) al Bianciardi e i dati degli esperimenti riprodotti sulla Terra. Man mano che lo studio dei dati procedeva, era evidente che tutti gli esperimenti attivi avvenuti su Marte si aggregavano perfettamente con i dati biologici fatti a Terra. I dati della temperatura si aggregavano con quelli di controllo negativi (suolo sterilizzato, su Marte o sulla Terra), ma soprattutto non c’era traccia di alcuna reazione chimica abiotica nel rilascio dell’anidride carbonica una volta che veniva aggiunta la soluzione nutritiva.
-La conclusione poteva essere solo una: c’è vita su Marte, i Viking l’avevano scoperta. – afferma il Bianciardi. Le analisi si sono concluse nel 2011 e i risultati sono stati pubblicati prima che la sonda Mars Science Laboratory (MSL) arrivasse su Marte 10.

Ma la storia è appena agli inizi ….


A caccia di Leoni(di)

Anche se con un evidente ritardo, vorrei parlare di un magnifico sciame meteorico, le Leonidi,  che ha il suo picco intorno al 17 di novembre, nei prossimi giorni quindi.
Questo sciame è legato all’orbita di una cometa periodica, la 55P/ Tempel-Tuttle [1]. È uno sciame molto bello, il suo periodo va dal 10 al 21-22  del mese di novembre col picco massimo nella seconda metà del periodo, il 17 appunto. In questo periodo spesso ha regalato delle vere e proprie piogge di meteore, arrivando a tassi orari nell’ordine delle migliaia, come avvenne anche nel 1833 in Nord America rappresentato qui accanto da un disegno dell’epoca.
I picchi si ripresentano con una ciclicità di circa 33 anni, che è anche il periodo orbitale della cometa d’origine, ma non sempre raggiungono le spettacolarità del 1833  o del più recente 2001.

Cielo sereno permettendo, dopo la mezzanotte sorge la costellazione del Leone, con la Luna che si avvia a tramontare 3 ore dopo.  Per i  temerari che vorranno osservare le Leonidi mi raccomando: copritevi bene, e poi dite che non ve l’avevo detto.

Io mi preparo già per gli anni tra il 2032 e il 2034, se tutto ritorna come credo, quelle saranno le migliori occasioni per osservare delle ancor più belle piogge di meteoriti. Come faccio a sostenerlo? gli indizi li avete già…


link utili:

[1] Orbita della 55P/Tempel-Tuttle

Caccia più dura agli esopianeti

La ricerca di esopianeti all’interno di ammassi stellari, come ad esempio 47 Tucanae (47 Tuc), sta dando molti meno risultati di quanto inizialmente si era previsto. Ma per questi dati pare esserci una spiegazione che merita di essere narrata.

47 Tucanae

Come illustrano John Debes e Brian Jackson della NASA Goddard Space Flight Center a Greenbelt, Maryland in un articolo che potrebbe essere prossimamente pubblicato sulla prestigiosa rivista Astrophysical Journal, questo è dovuto essenzialmente alle caratteristiche fisiche dei singoli sistemi negli ammassi stellari: quelli più giovani hanno maggiori possibilità di ospitare stelle con sistemi planetari che quelli più antichi.

Finora sono stati scoperti 490 esopianeti, ma come fa notare Debes, essi orbitano per lo più attorno a stelle singole, perché negli ammassi stellari (e nei sistemi multipli in generale n.d.r.) le perturbazioni gravitazionali possono essere abbastanza importanti da espellere gli eventuali corpi planetari;  inoltre, come spiega Jackson, si dovrebbe tener conto anche di un altro fattore importante, la metallicità delle stelle dell’ammasso: più questo è basso, più è antico e meno materia più pesante dell’idrogeno e dell’elio è stata disponibile per la creazione di pianeti.

Ma il lavoro dei due ricercatori non si ferma a queste considerazioni abbastanza scontate, essi hanno elaborato un modello che tiene conto soprattutto di un altro fattore che finora era stato trascurato: le orbite molto strette dei pianeti gioviani caldi, che rappresentano una grandissima percentuale degli esopianeti finora scoperti -anche perché sono quelli che hanno più possibilità di essere scoperti per la loro notevole influenza sulla stella principale- li espone al rischio concreto di venire cannibalizzati dalle loro stelle per effetto delle perturbazioni mareali che farebbero decadere la loro orbita fino a farli cadere sulla stella nell’arco di pochi miliardi di anni.
Qesto nuovo modello spiegherebbe perché all’interno di 47 Tucanae non sarebbe stato finora scoperto alcun pianeta, nonostante che i ricercatori se ne aspettassero almeno una dozzina su circa 34 mila stelle, senza aver bisogno di ricorrere alla scarsa metallicità del sistema per spiegare i risultati del sondaggio, come dice anche Ron Gilliland, dello Space Telescope Science Institute di Baltimora che ha partecipato allo studio su 47 Tucanae.

Rappresentazione artistica di WASP12-B cortesia NASA

In pratica questi pianeti gioviani caldi, orbiterebbero attorno alla loro stella con orbite molto più piccole di quella di Mercurio (sotto gli 8-10 milioni di chilometri) tanto da creare un effetto di marea, un rigonfiamento, sulla superficie stellare. Questo rigonfiamento segue l’orbita del pianeta e ne riduce l’energia, e quindi il raggio, di conseguenza l’azione mareale aumenta in cascata.
Gli ultimi momenti di vita di questi pianeti sarebbe drammatica: l’attrazione gravitazionale della stella strapperebbe via l’atmosfera del torrido  pianeta per poi assorbirlo completamente nella fotosfera (un po’ come accadrà alla Terra quando il Sole diverrà una gigante rossa, ma quella è un’altra storia). Un candidato ideale per questo fenomeno pare che sia già stato scoperto: si tratta di WASP12-B.

Questo nuovo modello indicherebbe che entro il primo miliardo di anni almeno un terzo dei pianeti gioviani caldi verrebbe distrutto.
La bontà di questo promettente studio potrebbe arrivare dalla missione Keplero, che studierà quattro diversi gruppi di stelle, che non saranno densi come un ammasso globulare, ma che hanno un’età stimata compresa tra meno di mezzo miliardo a quasi 8 miliardi di anni, e tutti dovrebbero avere abbastanza materia prima per formare un numero significativo di pianeti.  Se  i calcoli di Debes e Jackson hanno ragione, ci si dovrebbe attendere una quantità tre volte maggiore di pianeti gioviani caldi negli ammassi più giovani rispetto a quelli più vecchi.
Se questo modello verrà dimostrato, la caccia agli esopianeti potrebbe essere ancora più difficile e la stima di questi sistemi planetari caratterizzati dai gioviani caldi potrebbe essere sopravvalutata. Ciò implica che dovremmo osservare per un tempo molto più lungo un gran numero di stelle con strumenti più sensibili per cercare pianeti più deboli per avere una comprensione migliore dei sistemi planetari extrasolari.


La missione Keplero è gestita dal NASA Ames Research Center, Moffett Field, California.