VLTI (Gravity) registra la prima atmosfera extrasolare

HR8799. Una stella distante 129 anni luce, è la prima ad ospitare un pianeta di cui si sia osservata direttamente l’atmosfera!

Sono passati appena 40 anni da quando fu accertata l’esistenza dei pianeti attorno alle altre stelle; non che vi fossero dubbi al riguardo ma si riteneva che dimostrarne l’esistenza e perfino scrutarne qualcuno — come poi è stato fatto — fosse impossibile. E invece … eccoci qua!
Sfruttando l’ eccezionale apertura interferometrica di ben 100 metri (vedi nota a piè di pagina), gli astronomi sono riusciti a ricavare lo spettro dell’atmosfera di HR 8799 e, uno dei quattro pianeti di una stella molto giovane — appena una trentina di milioni di anni — di classe F0, distante appena 129 anni luce [1]. Il corpo celeste è un gioviano caldo, con una massa superiore di circa 10 volte quella di Giove ed è altrettanto giovane quanto la sua stella. Questa è una fortuna, perché permetterà in seguito di studiare nel dettaglio la sua evoluzione.
Comunque intanto sono stati raggiunti, e superati, diversi traguardi: il primo, e sicuramente il più importante, riguarda la capacità tecnologica di riuscire ad osservare finalmente l’atmosfera di un esopianeta, ossia di un mondo che non appartiene al nostro sistema solare; il secondo è che quell’atmosfera non è esattamente come i modelli standard delle atmosfere planetarie descrivono. E questo spingerà senz’altro gli astronomi a cercare e studiare altre esoatmosfere per cercare di comprenderne meglio i meccanismi. Intanto vi invito a consultare i link a fine articolo per vedere i risultati scientifici.
Questo è il link al comunicato ufficiale dell’ESO

[video_lightbox_youtube video_id=”uqdFCKSOJiY&rel=false” auto_thumb=”1″ width=”800″ height=”450″ auto_thumb=”1″]

 

Note:

 

Schizzo della disposizione dell’interferometro del VLT. La luce da un oggetto celeste distante entra in due dei telescopi del VLT e viene riflessa dai vari specchi nel tunnel interferometrico, al di sotto della piattaforma di osservazione sulla cima del Paranal. Due linee di ritardo con carrelli mobili correggono in continuazione la lunghezza dei cammini in modo che i due fasci interferiscano costruttivamente e producano frange di interferenza nel fuoco interferometrico in laboratorio.

L’Interferometria viene usata da decenni nel campo delle onde radio, dove si possono ottenere immagini con strumenti virtuali pari quasi al diametro terrestre, Il principio di funzionamento di un apparato interferometrico si basa sulla sovrapposizione in fase di due o più segnali coerenti allo scopo di esaltarne il segnale; per ottenere questo effetto però la differenza tra i cammini ottici dei fasci stessi deve rimanere inferiore ad un decimo della loro lunghezza ottica. Ora, nella radioastronomia il margine è piccolo ma comunque ottenibile senza grosse difficoltà: a 21 cm di lunghezza d’onda — ossia quella dell’idrogeno interstellare — la tolleranza è di appena 2 cm; anche se questa è misurata su basi lunghe migliaia di chilometri (Very-Long-Baseline Interferometry). Ma ricorrendo a trucchi che prevedono l’uso combinato di orologi atomici locali e maser all’idrogeno, l’ostacolo è comunque facilmente risolvibile.
Ma questi non funzionano nell’interferometria ottica dove le fasi del segnale sono lunghe appena 1μm (ossia nel vicino infrarosso) e dove quindi la tolleranza richiesta deve essere ancora dieci volte più piccola, Questo risultato però è ottenibile facendo convergere i fuochi dei 4 telescopi del VLT in un unico punto avendo cura che tutti i segnali percorrano esattamente la stessa distanza. In questo modo, e sfruttando sapientemente le ottiche adattive dei telescopi, si può raggiungere l’incredibile risultato di avere una risoluzione pari a circa un millesimo di secondo d’arco a  1μm di lunghezza d’onda. Il che significa risolvere un oggetto grande appena un paio di metri sulla Luna!

Links

Effetto serra nella primitiva atmosfera marziana

Purtroppo questo mese starò un po’ più lontano del solito da queste pagine. Lo scorso settembre decisi di dare una svolta alla mia vita e adesso quel momento è finalmente arrivato. Tranquilli, la mia assenza sarà solo temporanea, ve l’assicuro. Nel frattempo portate pazienza per un po’.

Rappresentazione artistica dell'interno di Marte. Credit: NASA/JPL

Rappresentazione artistica dell’interno di Marte.
Credit: NASA/JPL

Con la scoperta di bacini argillosi su Marte  ad opera del rover Curiosity il dibattito sull’antica presenza di acqua su Marte si fa sempre più acceso 1.

La presenza di acqua allo stato liquido presuppone che le condizioni ambientali marziane per un periodo passato siano state molto diverse da quelle attuali: innanzitutto Marte doveva essere molto più caldo di adesso. Come avevo evidenziato in passato 2 la Zona Goldilocks del Sole attualmente si estende tra 0,8 e 1,2 U.A. dalla stella, mentre Marte orbita un po’ più in là, a  circa 1,52 U.A. Quindi su Marte avrebbe dovuto  essere presente un fenomeno naturale capace di innalzare la temperatura fin oltre i 273° kelvin, ossia di almeno 50 gradi centigradi rispetto alla radiazione solare attuale 3 e almeno 70° a quella presente durante il Periodo Noachiano. Un meccanismo naturale capace di innalzare così le temperature esiste eccome: è l’Effetto Serra 4. Alcuni gas hanno la capacità di trattenere il calore più di altri tanto da sconvolgere l’equilibro termico naturale 5.

Il Monte Olimpo, il più grande vulcano conosciuto del Sistema Solare.

Il Monte Olimpo, il più grande vulcano conosciuto del Sistema Solare.

Senza dubbio questi tre gas combinati insieme hanno prodotto sul primitivo Marte un massiccio effetto serra che ha innalzato le temperature quel tanto che era sufficiente a mantenere l’acqua liquida. Sicuramente un ruolo importante l’ha avuto la crosta marziana che nel momento in cui si è solidificata ha ceduto la parte di acqua e anidride carbonica che tratteneva dando origine a una primitiva atmosfera. Nuovi studi sull’ipotetica composizione chimica e le condizioni fisiche dell’interno marziano 6 suggeriscono che particolari condizioni del mantello fuso del pianeta possono essere state responsabili attraverso gli imponenti vulcani del pianeta del rilascio di quantità significative di metano – che sappiamo essere uno dei più potenti gas serra – nella sua atmosfera. Finché è durata l’attività vulcanica marziana quindi Marte ha goduto dei benefici di un potente effetto serra che ha reso la sottile atmosfera marziana – non dimentichiamoci che Marte è grande la metà della Terra e nove volte meno pesante – abbastanza densa e calda.

Come suggerisce anche la sua densità 7, Marte è il meno denso dei pianeti rocciosi e nonostante tutto la percentuale di ferro contenuta nel suo mantello è insolitamente alta rispetto agli altri pianeti interni. Questo indica che la differenziazione chimica nota anche come Catastrofe del Ferro non si è mai conclusa per il Pianeta Rosso. Complice le ridotte dimensioni, un’atmosfera più sottile, e probabilmente,  meno elementi radioattivi pesanti come il torio (Th) e l’uranio (U) ereditati dalla nebulosa primordiale – che sulla Terra mantengono fluido il mantello e il nucleo – l’interno del pianeta si è raffreddato troppo presto, non si è sviluppato un nucleo fluido rotante capace di produrre un campo magnetico planetario importante in grado di proteggere l’atmosfera dall’azione ablativa del vento solare e dei raggi cosmici, si è interrotta l’attività vulcanica che alimentava l’atmosfera di metano.

Se Marte ha ospitato le condizioni a contorno necessarie allo sviluppo della vita, probabilmente queste si sono affacciate troppo presto e per troppo poco tempo nella storia marziana per essere significative.


Altri  riferimenti:
NASA rover studies geology of Mars’s crater, Physics Today, 3 aprile 2013.
Martian interior inside Mars, Esa Mars Express 7 gennaio 2007.