Risultati della ricerca per: alh84001

Ciclo biochimico del fosforo su Venere?

Sono passati diversi mesi dal mio ultimo articolo qui; diciamo pure che, dopo l’uscita del mio libro, mi sono preso un periodo sabbatico dalla scrittura più impegnata. Certo che nel frattempo, nonostante il fermo dovuto alla pandemia da Covid-19, non sono stato mai in ozio, visto che sto progettando — e costruendo — la mia personale  stazione meteorologica e della qualità del cielo. Spero che presto possa presentare qui alcuni miei risultati, ma proprio oggi una notizia piuttosto importante è stata pubblicata su Nature, e di questo sento il bisogno di dire la mia.

Immagine composita di Venere dai dati della sonda spaziale Magellan della NASA e del Pioneer Venus Orbiter. Credit: NASA / JPL-Caltech

Ipotesi sulla possibile vita microbica sugli altri pianeti del Sistema Solare si sprecano: nel lontano 1967 anche il celebre scienziato Carl Sagan si cimentò nell’immaginare vita aerea sulle sommità dei pianeti giganti gassosi e di Venere.
E nel dicembre 1999, l’astrobiologo britannico Charles S. Cockell,  ipotizzò la presenza di forme di vita chemioautotrofe sulle nubi superiori di Venere[1].

Però come è noto, la superficie di Venere è inospitale per ogni forma di vita a noi nota, anche la più estrema. 460 gradi Celsius, 92 volte la pressione atmosferica della Terra, piogge di acido solforico: niente lì potrebbe sopravvivere. Eppure, sopra questo inferno, tra i 50 e 60 chilometri dalla superficie, c’è uno strato di anidride solforosa e di acido solforico sormontato da uno strato di goccioline, sempre di acido solforico, dove la temperatura e pressione sono simili agli standard terrestri, ed è anche tutto quello che noi riusciamo a vedere di Venere. È comunque un ambiente estremamente acido, dove anche la vita più estrema scoperta sulla Terra[2] potrebbe avere serie difficoltà a sopravvivere.

Il 14 settembre 2020, su Nature, è apparsa una ricerca[3] che pare dare conferma alle tante speculazioni sulla presenza di forme di vita sulla sommità delle nubi di Venere.
Prima di scendere un po’ più in dettaglio, occorre sempre tenere ben presente che quanto finora è stato scoperto è, nel migliore delle ipotesi, una flebile traccia, poco più dell’ombra di una parziale impronta digitale sul luogo di un delitto, il che significa appena un indizio.
La ricerca della vita extraterrestre nel nostro Sistema Solare è piena di indizi: molecole organiche o i loro resti, su Marte e nelle meteoriti, i pennacchi stagionali di metano marziano, l’oceano sotterraneo di Encelado, le molecole complesse di Titano e quelle scoperte nelle comete. Potrei fare un elenco della lavandaia lungo chilometri solo per citare i casi più importanti. E anche laddove sembrava certa la scoperta di altre forme di vita, come nel caso del meteorite di origine marziana ALH84001, oppure l’esperimento Labeled Release di Gilbert Levin, montato sulle sonde Viking, il dibattito Vita/non-Vita è ancora acceso.

Fosfina su Venere

La fosfina è composta da appena 3 atomi di idrogeno legati ad un singolo atomo di fosforo ( formula bruta  PH3), formando così una struttura tetraedrica, molto simile all’ammoniaca (NH3) ma molto più reattiva. Una molecola piuttosto semplice, che si ritrova anche nel materiale interstellare attorno alle stelle  ricche di carbonio e ossigeno (quindi mediamente più vecchie) e nelle atmosfere dei pianeti giganti, dove viene prodotta continuamente dalle pressioni e temperature molto alte negli strati atmosferici profondi e poi trasportata per convezione verso l’alto[4] dove degrada. In questi luoghi la fosfina non desta particolari attenzioni, perché presentano condizioni chimico-fisiche che consentono la formazione stabile di questa molecola, mentre nei pianeti rocciosi, come Venere e Terra, le superfici e le atmosfere planetarie degradano e distruggono molto rapidamente la delicata molecola.

Sulla Terra, ad esempio, le uniche fonti importanti di fosfina, (tralasciando la produzione industriale) sono i processi di scarto prodotti dal metabolismo di batteri anaerobi che si nutrono del materiale biologico in decomposizione o dai minerali fosfati.

L’evidenza di una probabile presenza di fosfine nelle nubi di Venere fu notata nel giugno 2017 dall’astrobiologa Jane Greaves durante una osservazione dal James Clerk Maxwell Telescope. Ma tale scoperta doveva in qualche modo essere confermata: poteva essersi trattato di una svista nella taratura degli strumenti o di un falso segnale.
E nel marzo 2019, attraverso la rete interferometrica dell’Atacama Large Millimeter/submillimeter Array (ALMA) è arrivata la conferma del segnale rilevato nel 2017 dal C. Maxwell1. Sono stati usati 45 telescopi puntati su Venere per tre ore ad una lunghezza d’onda di circa 1 millimetro, ossia 2000 volte più lunga della luce visibile: solo i telescopi ad alta quota (ALMA è a 5100 metri s.l.m.) possono osservare bene nell’infrarosso dalla Terra. L’elaborazione dei dati è stata molto complessa: Alma non è stato progettato per risolvere particolari minuti su sorgenti brillanti come Venere. Tuttavia la procedura di riduzione dei dati è comunque ben documentata e rimando a quello che è stato scritto nell’articolo pubblicato su Nature.

Spettro di Venere ottenuto con ALMA. Il pannello sinistro mostra lo spettro PH3 dell’intero pianeta.  Il pannello destro mostra gli spettri delle zone polari (istogramma in nero), a media latitudine (in blu) ed equatoriale (in rosso). Gli spettri sono stati sfalsati verticalmente per chiarezza, e lo spettro polare è stato collocato in velocità per ottenere un limite superiore più profondo.

Questa scoperta apre scenari molto interessanti: nella sommità delle nubi (53-61 chilometri dal suolo venusiano), nei dintorni delle Celle di Hadley2 i ricercatori hanno scoperto le deboli tracce di fosfina in ragione di 20 ppb (parti per miliardo). Il pozzo nel diagramma qui a lato mostra la riga di assorbimento della fosfina nell’atmosfera di Venere.

Il dilemma è che su Venere di fosfina non dovrebbe essercene proprio: essa è una molecola estremamente reattiva, il famoso gas di palude che dà origine ai fuochi fatui non è altri che metano e fosfina (o fosfano, che è la stessa cosa) originati dalla decomposizione di materiale organico3. Senza una fonte costante di produzione essa non potrebbe esistere a lungo su un pianeta roccioso (sui pianeti giganti invece si forma continuamente per poi degradare). Sulla Terra, l’unica fosfina naturale esistente è prodotta durante il ciclo biologico del fosforo[5] (vedi illustrazione superiore), mentre l’atmosfera ossidativa del pianeta o i minerali della superficie degradano la molecola molto rapidamente.
A questo punto diventa arduo spiegare la presenza di molecole di fosfina nell’alta atmosfera di Venere, un ambiente iperacido e bombardato dai raggi UV del Sole.  Tutti i meccanismi naturali, ovvero fulmini atmosferici, apporto da materiale meteorico, vulcanismo, non sono in grado di giustificare  una presenza costante (ricordo che la presenza della molecola è stata osservata nel 2017 col C. Maxwell Telescope e nel 2019 con ALMA) e massiccia (20 ppb) di fosfina: ad ora nessun meccanismo abiotico noto presente sui pianeti rocciosi è in grado di farlo.

Presunta origine biotica della fosfina su Venere

Eliminate all other factors, and the one which remains must be the truth. Elimina tutti gli altri fattori e quello che rimane deve essere la verità.
Sir Artur Conan Doyle, Sherlock Holmes “The Sign of the Four”, a.D. 1890

In base alle considerazioni precedenti, l’unica strada percorribile per spiegare la presenza di fosfina sulla sommità delle nubi di Venere, resta l’origine biochimica. Ma anche questa non è una via facile da percorrere.
Innanzitutto — ammesso e non concesso — che la fosfina venusiana sia di origine biologica, occorre capire come, in un’atmosfera dinamica e acida, la vita sia riuscita a perpetuarsi ed evolversi. Sulla Terra abbiamo scoperto estremofili che riescono a prosperare in condizioni estreme come quelle presenti nelle sorgenti idrotermali del vulcano Dallol, in Etiopia e che resistono benissimo agli ultravioletti, come i cianobatteri delle stromatoliti del lago salato Salar de Llamara, nella regione di Tarapaca,  nel nord del Cile.
Innanzitutto dovremmo capire come sia possibile l’esistenza di forme di vita esclusivamente aerea. Anche la Terra ha una biosfera aerea, dove microorganismi arrivano a lambire lo spazio[6] e, anche se questa biosfera pare estendersi fino gli 85 chilometri di quota  (giusto per fare un paragone, la ISS orbita a 408 km di quota), essa perlopiù risiede sospeso dentro le goccioline d’acqua nebulari e partecipa al ciclo delle precipitazioni[7]. In pratica, sulla Terra, avviene un continuo scambio di minerali e forme di vita microbica tra il suolo e l’atmosfera, basti osservare che, senza l’apporto delle sabbie dal Sahara, le Bahamas non potrebbero esistere.
Non sappiamo se il medesimo ciclo è presente anche su Venere, ma è improbabile che, se esistesse qualche forma di vita nelle sommità delle nubi del pianeta, possa resistere alle tremende condizioni fisiche presenti al suolo. L’unica alternativa è che la vita venusiana sia limitata alla mesosfera e che sia incapace di scendere al di sotto: uno strato limite che impedisce alle forme di vita microbica e le loro spore di raggiungere gli strati sottostanti dove verrebbero distrutti. Sulla Terra la copertura nuvolosa è discontinua e dinamica; su Venere, invece, è ricoperto da ben tre distinti strati di nubi: uno strato superiore, composto da piccole goccioline di acido solforico ad una quota compresa tra i 60 e 70 km; uno strato intermedio, costituito da gocce più grandi e meno numerose, collocato a 52–59 km di altitudine; e infine uno strato inferiore più denso e costituito dalle particelle più grandi, che scende fino a 48 km di quota. Al di sotto di tale livello la temperatura è talmente elevata da vaporizzare le gocce, generando una foschia che si estende fino a 31 km di quota. Quindi è ipotizzabile che su Venere siano i diversi strati chimico-fisici dell’atmosfera a impedire che l’eventuale biosfera precipiti al suolo e che il taso di riproduzione delle forme di vita che la popolano compensi le inevitabili perdite.
Inoltre, rimangono da comprendere i meccanismi cellulari di forme di vita così estreme. Le nubi di Venere sono molto più aride e acide del più acido e secco ambiente che troviamo qui sulla Terra: nelle piscine idrotermali del Dallol è l’acido solforico ad essere disciolto nell’acqua, mentre su Venere è l’acqua ad essere disciolta nel medesimo acido. Un metabolismo di tipo terrestre non sarebbe possibile su Venere: la biochimica che conosciamo, gli acidi nucleici e le proteine, i lipidi e gli zuccheri, verrebbero distrutti istantaneamente. Nel 2004 l’astrobiologo Dirk Schulze-Makuch propose che una biochimica simile alla nostra avesse imparato ad usare lo zolfo come guscio protettivo[8] (lo zolfo non è bagnato dall’acido solforico) e la fotosintesi come fonte energetica.

Ipotetico ciclo vitale venusiano.

La copertura nuvolosa su Venere è permanente, dove gli strati medi e inferiori offrono le condizioni più simili alla Terra.

Ma rimane pur sempre il problema dell’acqua: anche nelle piscine del Dallol l’acqua è sempre presente. Nel luogo più secco della Terra, il deserto di Atacama difficilmente scende sotto il 2%. Venere è però almeno 50 volte più secco del più secco luogo disponibile sul nostro pianeta. Certo, sono noti funghi e spore che si attivano con un’umidità relativa del 0,7%, ma nelle nubi di Venere questo indice scende a 0,04%. Poi c’è il problema dei nutrienti necessari a mantenere il ciclo metabolico: una importante fonte potrebbe essere la polvere meteorica che cade incessantemente sul pianeta, ad esempio, o riciclare il carbonio e l’azoto direttamente dall’atmosfera.
Per i dettagli rimando all’articolo[9] pubblicato nell’agosto di quest’anno dall’astronoma Sara Seager “The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere” a proposito di un ipotetico ciclo biologico presente su Venere.

Un meccanismo abiotico per la fosfina su Venere

Il vulcanismo venusiano come fonte della fosfina fu scartato da Jane Greaves e gli altri perché ritenevano che l’apporto di questo meccanismo non avrebbe potuto spiegare la persistente quantità osservata (20 ppb) della molecola.
Un nuovo studio[10] (comunque ora pare ritirato) firmato dal professore di Chimica Teorica e Computazionale dell’Università dello Utah  Ngoc Truong e il fisico planetario della Cornell University Jonathan I. Lunine, propone di rivalutare il ruolo del vulcanismo basaltico di Venere: una quantità di 93 chilometri cubici di lava all’anno4 potrebbero essere sufficienti a produrre solfuri a sufficienza per spiegare l’attuale presenza di fosfina nelle nubi superiori di Venere. L’analisi si basa su una presunta ripresa dell’attività vulcanica di Venere basandosi sulla scoperta di punti caldi sulla superficie del pianeta identificati dalla sonda europea Venus Express[11].
Anche ammettendo che le molecole di fosfina si degradino meno nell’atmosfera di Venere (non ci sono radicali ossidrilici (-OH) come sulla Terra) il parossismo vulcanico di Venere pare si sia concluso tra 2 milioni e 250 mila anni fa, e che ora potrebbero essere in atto perlopiù sporadiche emissioni di anidride solforosa, la quantità di fosfina nella mesosfera di Venere rimane ancora un mistero.

Conclusioni

Su Venere potrebbe esistere un meccanismo abiotico per la produzione di fosfina ancora sconosciuto sulla Terra, oppure un composto chimico potrebbe aver imitato la medesima riga spettrale per ora attribuita alla fosfina. O forse è veramente Vita, magari una vita talmente aliena alla nostra esperienza che non potremo neppure riconoscere come tale perché la sua biochimica è del tutto diversa dalla nostra.
Solo una ricerca sul campo potrà aiutarci a capire cosa succede nelle nubi più alte di Venere.

Un altro caso marziano: Yamato 000.593

Yamato 000593

Questa è una serie di immagini riprese al microscopio elettronico a scansione di una sezione sottile lucida di Yamato 000.593. Il iddingsite presente in questo meteorite è un minerale argilloso (vedi nota articolo). Qui sono evidenti anche dei microtuboli 
La barra di scala in basso a sinistra è di 2 micron.
Credit: NASA

Dopo il pluridecennale caso di ALH84001 1, adesso a tenere banco nella comunità scientifica è un altro meteorite marziano, conosciuto come Yamato 000.593. Il meteorite, che pesa 13,7 chilogrammi, è una acondrite trovata durante la spedizione giapponese Antarctic Research Expedition del 2000 presso il ghiacciaio antartico Yamato. Le analisi mostrano che la roccia si è formata circa 1,3 miliardi di anni fa da un flusso di lava su Marte. Circa 12 milioni di anni fa un violento impatto meteorico ha scagliato dei detriti dalla superficie di Marte fin nello spazio e, dopo un viaggio  quasi altrettanto lungo, uno di questi è caduto in Antartide circa 50.000 anni fa. Adesso, gli stessi autori che nel 1996 annunciarono la scoperta di tracce di batteri alieni all’interno di ALH840001 [cite]http://www.sciencemag.org/content/273/5277/924[/cite], si sono concentrati sullo studio del meteorite Yamato [cite]http://online.liebertpub.com/doi/abs/10.1089/ast.2011.0733[/cite] scoprendo così la presenza di un tipo di argilla chiamata iddingsite 2 che si forma in presenza di acqua liquida [cite]http://www.researchgate.net/publication/234234597_Yamato_nahklites_Petrography_and_mineralogy[/cite].

caratteristiche incorporate in uno strato di iddingsite.  Sedi di EDS spettri delle sferule  e lo sfondo è dato dal rosso e  cerchi blu, rispettivamente. (B) EDS spettri  di sferule (rossi) e lo sfondo (blu).  Le sferule sono arricchiti * 2 volte in  carbonio rispetto allo sfondo. (C)  Vista SEM delle caratteristiche spherulitic incassato  sia in un superiore (arancione falsi colori)  e strato inferiore di iddingsite. Credit: NASA

(A) Le nanostrutture ricche di carbonio incorporate in uno strato di iddingsite.
(B) Gli spettri delle sferule e lo sfondo sono evidenziati dai cerchi rosso e blu Le sferule mostrano il doppio di carbonio rispetto allo sfondo.
(C) Le sferule appaiono incassate tra due diversi strati di iddingsite: qui il superiore (in falsi colori) e uno inferiore.
Credit: NASA

Dai margini di queste vene di iddingsite partono delle strutture filamentose che contengono aree ricche di carbonio non dissimili al cherogene 3. La presenza di materiale organico complesso come il cherogene in una meteorite marziana non deve trarre in inganno: la sua presenza è stata registrata anche all’interno di molte altre meteoriti: le condriti carbonacee di solito ne sono abbastanza ricche [cite]https://www.jstage.jst.go.jp/article/jmps/100/6/100_6_260/_article[/cite]. Occorre anche ricordare che l’origine dei cherogeni non è necessariamente di origine biologica, visto che è presente anche nelle polveri interstellari [cite]http://www.aanda.org/articles/aa/abs/2001/41/aah2968/aah2968.html[/cite].

Un’altra caratteristica del meteorite Yamato sono le sferule particolarmente ricche di carbonio, circa il doppio rispetto all’area circostante, situate tra due diversi strati di minerale argilloso che le separa dai carbonati e i silicati circostanti. Solo un altro meteorite marziano , il Nakhla 4 presenta strutture simili 5.

La presenza di acqua liquida su Marte in un intervallo di tempo compreso tra 1,3 miliardi e 650 milioni di anni fa è stata confermata anche da altre meteoriti [cite]http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2000.tb01978.x/abstract[/cite] e da diversi studi effettuati con sonde automatiche, ma essa da sola non è sufficiente per confermare – o confutare – una antica presenza di vita marziana.
Oltre all’acqua occorrono una fonte di energia e i materiali necessari per il suo sviluppo, ma sopratttutto occorre che siano presenti opportune condizioni ambientali [cite]http://www.researchgate.net/publication/258613544_Technologies_for_the_Discovery_and_Characterization_of_Subsurface_Habitable_Environments_on_Mars[/cite] che – attualmente – Marte non ha.
Anche se la contemporanea presenza di materiali organici complessi come i cherogeni e l’acqua liquida sulla superficie del Pianeta Rosso suggeriscono che lì in passato vi siano stati alcuni fattori ambientali necessari a sostenere la vita, e nonostante alcune somiglianze strutturali di alcuni campioni provenienti da Marte con materiali terrestri, questo comunque non prova che la vita su Marte sia mai realmente esistita. Solo uno studio di laboratorio su campioni di suolo marziano può darci la risposta definitiva.
Per ora è meglio essere cauti.


Note:

Le origini del carbonio marziano

Conosciamo ancora poco di Marte, siamo passati dai canali di Schiapparelli alla superficie arida e senza vita disegnata dalla Mariner4 fino agli esperimenti di biologia delle sonde Viking. Fino a che Curiosity con il suo laboratorio semovente non ci dirà esattamente come stanno le cose su Marte non possiamo che campare di congetture e pochi dati, magari rinvenuti su qualche asteroide marziano piovuto sulla Terra.

ALH84001 - Credit: NASA/JSC/Stanford University

Un nuovo studio 1 condotto da Andrew Carnegie Steele cerca di svelare le origini del carbonio marziano ritrovato in alcune meteoriti di origine marziana, come ad esempio la celeberrima ALH84001.

Il team di Steel ha analizzato 11 campioni meteorici marziani che coprono un arco temporale di 4,2 miliardi di anni di storia marziana e ha studiato le inclusioni carboniose presenti trovando che in dieci di essi queste sono idrocarburi 2 Alcuni di questi composti carboniosi erano inglobati da strutture cristalline minerali, il che ovviamente fa escludere qualsiasi ipotesi di contaminazione esterna alla meteorite o successiva all’epoca della creazione della roccia, quindi la loro origine è senza dubbio la stessa del meteorite: marziana.

Studiando la struttura cristallina che racchiudeva queste grandi molecole organiche 3 il team di Steel ha ottenuto importanti informazioni sulla genesi di queste. Le macromolecole di carbonio sono il frutto di semplici processi chimici – come l’alchilazione 4 – riguardanti molecole più piccole presenti nel mantello del pianeta,  ancora saturo di carbonio, idrogeno e ossigeno 5, e portate in superficie da processi vulcanici.

Certo che stando così le cose, ancora di più Marte si presenta come un’importante tappa per lo studio e l’evoluzione dei pianeti rocciosi e sulle possibili ripercussioni sull’eventuale biologia autoctona che questa ha.


A quando il Primo Contatto?

Una notizia di questi giorni, poi rivelatasi una bufala, prevedeva di affidare l’incarico di gestire un’eventuale futura scoperta di E.T.I. (Extraterrestrial Intelligence) all’ufficio UNOOSA (UN Office for Outer Space Affairs) al cui vertice siede attualmente l’astrofisica malese Mazla Othman. La notizia, pubblicata in origine dal Sundey Times, sarebbe dovuta essere annunciata durante una conferenza scientifica al centro congressi della Royal Society Kavli nel Buckinghamshire previsto per la prossima settimana.

Con tutto il rispetto per la scienziata malese,  è comunque un po’ poco un ufficio che fino a ieri era conosciuto soltanto agli addetti ai lavori per gestire un evento così importante per l’umanità come la fase di Primo Contatto: questa, a mio avviso, già doveva far riflettere sulla serietà della notizia.
Un vero Primo Contatto dovrebbe essere gestito non solo dall’intero corpo scientifico e accademico mondiale (matematici, fisici, biologi, etc.) ma anche da teologi di tutte le religioni e dall’Ufficio di Presidenza delle Nazioni Unite insieme ai  rappresentanti politici di tutte le nazioni del pianeta; dopotutto non è un evento che capiti spesso, anzi sarebbe unico.

Ma al di là della bufala, quali probabilità ci sono che si possa verificare prossimamente un Primo Contatto?

La zona riccioli d’oro

Questa è una  fascia teorica in cui un pianeta riceve abbastanza energia dalla sua stella da permettere l’esistenza dell’acqua liquida  necessaria per la biochimica del carbonio come la conosciamo noi.
Quindi la zona riccioli d’oro  seguirà grossomodo la legge dell’inverso del quadrato della luminosità di una stella, ovvero più questa è luminosa più lontana è la zona da essa.

Ad esempio nel lontano passato, il Sole era meno luminoso di oggi, e solo un massiccio effetto serra delle prime atmosfere impedì al pianeta Terra di congelarsi forse definitivamente.

La sonda Keplero, di cui ho illustrato i risultati parziali finora resi pubblici in questo articolo, ha permesso di farci scoprire finora 490 pianeti certi. Su questi dati (in realtà il campione al tempo considerato era di 370 pianeti) sono state fatte indagini statistiche che suggeriscono la probabilità del 50% che la prima Exo-Terra possa essere scoperta entro il maggio 2011, il 75% entro il 2020, e il 95% entro il 2.264 [1].
Ho cercato di illustrare con diversi articoli sul Poliedrico quanto sia alta la probabilità che esistano altre forme di vita nell’Universo, ma vorrei rimarcare su un punto fondamentale di questa: le forme di vita più comuni saranno quasi sicuramente (il condizionale è d’obbligo quando si fanno speculazioni di questo livello) batteri e organismi con poca o nessuna organizzazione pluricellulare -presupposto abbastanza ragionevole per avere una forma di vita senziente. Questo non significa che la vita senziente come la intendiamo noi sia esclusa dal novero delle probabilità, ma che essa certamente rappresenta una rarità rispetto a tutte le altre forme di vita. Di questo argomento ne tiene conto anche la celeberrima equazione di Drake, in cui qui ho cercato di dare una soluzione fin troppo ottimistica qui.
La scoperta di una Exo-Terra non significa necessariamente che essa ospiti forme di vita: potrebbe essere un inferno come Venere, sterile come Marte, o inospitale come il nostro Adeano. Dopotutto la Terra è stata abbastanza inospitale alle forme di vita che oggi conosciamo per una discreta parte della sua storia, e che come si può notare qui a fianco,  è solo negli ultimi 530 milioni di anni, con l’esplosione cambriana, che la vita sulla Terra ha assunto le caratteristiche che tutti conosciamo.
Quindi ad una Exo-Terra per ospitare forme di vita non basta che sia della dimensione giusta (massa) e nell’orbita giusta (zona riccioli d’oro), ma deve essere osservata anche nel periodo giusto.
L’unico modo che abbiamo per stabilirlo è quello spettroscopico: analizzando l’impronta energetica degli atomi dell’atmosfera del pianeta lasciata sulla luce che esso ci rimanda della sua stella. Più facile a dirsi, in questo caso, che a farsi.
Anche adesso possiamo solo dedurre che un pianeta di dimensioni inferiori a quelle di Giove orbiti intorno ad una stella dalle perturbazioni gravimetriche sul baricentro del sistema stellare o attraverso le deboli variazioni fotometriche della stella, riuscire a separare la luce di un piccolo pianeta dalla sua stella  attualmente è al limite delle capacità dei nostri strumenti. Ad esempio l’Hubble è in grado di discernere particolari dell’ordine del decimo di secondo d’arco (immaginate un cerchio diviso per 36000), ossia distinguere la Terra mentre è alla fase del quarto (alla massima distanza angolare dalla stella) da 32 anni luce , quindi è un po’ difficile riuscire per ora anche solo discernere la luce del solo pianeta con un’orbita all’interno della fascia riccioli d’oro, ossia circa 130-200 milioni di chilometri dalla stella. In previsione di questo genere di osservazioni, la sonda EPOXI nel 2008 puntò i suoi strumenti verso la Terra, per avere appunto un’indicazione  su cosa dovremmo aspettarci osservando un’altro pianeta simile alla Terra in orbita ad un’altra stella.

Comunque quella di un’altra Exo-Terra rimarrebbe più una scoperta scientifica che una situazione di Primo Contatto, e lo stesso dicasi per l’eventualità tutt’altro che remota che possa in un prossimo futuro essere scoperta un’altra forma di vita elementare al di fuori del nostro pianeta. L’unica possibilità rimane dal programma SETI, ma non sarebbe anche in questo caso un Primo Contatto vero e proprio: potremmo sempre decidere di non rispondere, un po’ come facciamo la domenica mattina a letto quando telefonano gli scocciatori.
Queste possibili scoperte potrebbero rivoluzionare il  modo di pensare la nostra esistenza, la nostra filosofia e le nostre religioni. Potrebbe davvero essere il profondo cambiamento culturale di cui avremmo tanto bisogno.


[1] http://blogs.discovermagazine.com/sciencenotfiction/2010/09/23/carbon-dioxide-sucks-it-cooks-our-planet-makes-first-contact-harder/ , http://arxiv.org/abs/1009.2212

Le origini della Vita (prima parte)

«Da questo spirito poi, che è detto vita dell’universo, intendo nella mia filosofia provenire la vita et l’anima a ciascuna cosa che have anima et vita, la qual però intendo essere immortale; come anco alli corpi. Quanto alla loro substantia, tutti sono immortali, non essendo altro morte».
Giordano Bruno

200px-Giordano_Bruno_Campo_dei_Fiori[1]
Giordano Bruno a
Campo de’ Fiori (Roma)
Nei giorni scorsi Stephen Hawking ha fatto un’affermazione che per gli scienziati è abbastanza scontata, basta leggersi qualsiasi intervista o lavoro sull’argomento “forme di vita extraterrestri” prodotto dalla comunità scientifica per scoprire le stesse cose. Hawking ha solo presentato una serie di documentari per Discovery Channel che subito i media, profani, di tutto il mondo hanno gridato al pericolo extraterrestre.
Ma cosa ha detto mai Hawking?
Hawking ha cercato solo di spiegare che in universo composto da miliardi di galassie ognuna di esse con centinaia di milioni di stelle è assai improbabile che la vita (per Grazia Divina) si sia sviluppata soltanto qui sulla Terra, è quello che dai tempi di Giordano Bruno la Scienza cerca di dire e che alle persone di buon senso questa affermazione appare ovvia, anch’io ho trattato quest’argomento agli albori  di questo Blog con una serie di articoli (Dove sono l’omini verdi(prima parte)(seconda parte)(terza parte) ).
Poi Hawking ha affermato che molte di queste altre forme di vita potranno essere soltanto degli organismi semplici, anche per la Terra è stato così per gran parte della sua esistenza (da 3,8 miliardi di anni fa fino a 600 milioni di anni fa, Precambriano). Le relativamente poche forme di vita intelligente, potrebbero costituire una potenziale minaccia per il genere umano come lo è stato nella storia del genere Umano ogni volta che civiltà più evolute tecnologicamente si sono incontrate con quelle meno progredite, per questo bastano e avanzano gli esempi storici dell’avanzata europea nel mondo: gli spagnoli in Sud America, gli inglesi in Asia e Nord America, etc.
Un’altro pericolo reale è che queste altre forme di vita possono essere portatori di letali malattie come lo è stata per noi la peste nel XIV secolo o il virus Ebola (nel libro “La guerra dei mondi” di Herbert George Wells i marziani devastano le città terrestri ma muoiono tutti a causa delle malattie di cui noi però possediamo gli anticorpi), ma lo stesso può valere per l’inverso.
Più o meno le stesse cose le affermava anche Carl Sagan ad esempio, anche se per Sagan il contatto con altre civiltà sarebbe potuto esserci solo per via radio, viste le distanze siderali che ci separerebbero dalle altre civiltà, praticamente insormontabili per la fisica come la conosciamo, ma efficaci, come ho anch’io illustrato nei miei suddetti precedenti articoli, di gettare nel panico le nostre convinzioni basate sull’unicità dell’Uomo nell’Universo e di sconvolgere la nostra civiltà.

449366main_spitzer-20061010-226[1]
Rappresentazione artistica
della fascia degli asteroidi
Cortesia NASA

Ora, è notizia di queste ore, che una ricerca guidata dall’astronomo Andrew Rivkin della Johns Hopkins University durata sei anni, abbia portato alla scoperta di acqua e composti organici a base carbonio sull’asteroide 24 Themis, che orbita nella fascia principale di asteroidi  a 479 milioni di chilometri dal Sole, L’eccezionalità della scoperta è che a quella distanza si riteneva improbabile che l’acqua si potesse essere conservata per 4,6 miliardi di anni, dalla nascita del Sistema Solare, ma il bello della Scienza è quello di dubitare sempre sui dogmi e di rimettersi continuamente in gioco e così che è stata fatta la scoperta.
La scoperta di acqua nel nostro sistema solare non è propriamente una novità, sappiamo che essa esiste sulle lune dei pianeti esterni, nelle comete e recentemente è stata scoperta anche sulla Luna. Sappiamo anche di composti organici a base carbonio scoperti nelle comete (sonda Giottocometa di Halley, 1986) e nell’Universo grazie ai radiotelescopi.
Quello che sta a significare la scoperta è che essa è un’altro importante punto a favore all’ipotesi che la vita, o comunque i suoi mattoni fondamentali possono essere nati al di fuori ,e comunque non necessariamente, sulla Terra.
Questa è la teoria della Panspermia.
Ora se credete che l’Universo sia nato il 23 ottobre del 4004 a.C. verso mezzogiorno, ossia siete dei Creazionisti, vi conviene fermarvi qui e non andare oltre, perché l’argomento di cui parlerò nella second

a parte potreste giudicarlo blasfemo.

(continua)

Dove sono l’omini verdi…(terza parte)

Grazie al metorite ALH84001 possiamo supporre che comunque siano esistite altre forme di vita elementare extraterrestre nel nostro sistema solare e quindi di riflesso si può altrettanto ragionevolmente supporre che nel caso vengano rispettati certi parametri chimico-fisici importanti, la vita sia in grado di svilupparsi comunque e ovunque all’esterno del nostro pianeta.
Il concetto di cosa si possa definire
vita per ora lo lascio ai biologi e ai filosofi, vista l’enorme complessità dell’argomento, ma vorrei un attimo ripartire da quello che noi per certo siamo: forme di vita a base di carbonio.
Il carbonio è un elemento atomico estremamente reattivo capace di legarsi con gli altri elementi in virtù delle sue straordinarie proprietà fisiche quasi uniche, dando origine così a molecole estremamente complesse, che a loro volta possono unirsi fra loro fino a originare catene di amminoacidi, e poi ancora più su fino a produrre sistemi organici complessi in grado di autoriprodursi in un ambiente favorevole, ossia la vita.
Nel 1928 nell’ambito delle ricerche per la radiocomunicazione transatlantica la Bell Telephone Company dette l’incarico a un ingegnere radio di studiare i radiodisturbi sulle onde corte; il giovane ricercatore si chiamava Karl Jansky, il quale costruì un’antenna girevole per scoprire la provenienza dei disturbi radio sulla lunghezza d’onda di 14,5 metri, con cui scoprì alla fine che i disturbi provenivano da una regione del cielo precisa e che essi seguivano precisamente una rotazione ogni 23 ore e 56 minuti: esattamente un giorno siderale, dimostrando così la loro origine extrasolare, infatti il segnale proveniva dalla direzione del Sagittario ossia dal nostro centro galattico; così nacque la radioastronomia.
In seguito furono costruite antenne apposite sempre più grandi e sofisticate in grado di ascoltare porzioni di cielo con una risoluzione tale da arrivare quasi a competere coi telescopi ottici (grazie anche all’ingegnoso uso della tecnica dell’interferometria), capaci di “vedere” un campo di calcio posto sulla Luna. Con i radiotelescopi sono state analizzate le nubi di polveri e gas della galassia, con lo scopo di studiarne le dimensioni ed evoluzione e all’interno di queste sono state trovate le
firme radio di molti composti organici del carbonio e di interi gruppi di amminoacidi, i precursori della vita a base di carbonio quale la conosciamo! Quindi per ora nessuna civiltà aliena ci è apparsa, ma comunque abbiamo scoperto che forse forse la vita a base di carbonio potrebbe essere diffusa molto di più di quello che ci aspettavamo.
In questo campo nel 1960 prese il via il progetto OZMA diretto dal radioastronomo Frank Drake, che dal radiotelescopio di Green Bank in Virginia esaminò 2 stelle, Tau Ceti ed Epsilon Eridani per la loro somiglianza al nostro Sole, allo scopo di individuare segnali radio provenienti da una civiltà paragonabile alla nostra. Lo studio durò appena 4 mesi ma non produsse alcun risultato.
Frank Drake formulò un’equazione per tentare di stimare quante potessero essere le civiltà con cui potremmo entrare in contatto nella nostra galassia, la celeberrima equazione di Drake appunto:
N = R^{*} ~ \times ~ f_{p} ~ \times ~ n_{e} ~ \times ~ f_{l} ~ \times ~ f_{i} ~ \times ~ f_{c} ~ \times ~ f_{m} ~ \times ~ L
dove i parametri sono:
  • N è il numero di civiltà extraterrestri evolute presenti oggi nella Galassia
  • R* è il tasso medio di formazione stellare nella Via Lattea

  • fp è la frazione di stelle che possiedono pianeti
  • ne è la frazione di pianeti per sistema solare con le condizioni adatte ad ospitare forme di vita
  • fl è la frazione dei pianeti ne che abbiano sviluppato la vita

  • fi è la frazione dei pianeti fl su cui si sono potuti evolvere esseri intelligenti

  • fc è la frazione di civiltà extraterrestri in grado di poter comunicare via radioe che ne abbiano l’intenzione 

     

  • fm è la frazione di civiltà in grado di raggiungere e colonizzare più pianeti (non sempre questa frazione viene presa in considerazione)
  • L è la stima della durata che queste civiltà evolute che siano in grado di trasmettere segnali nello spazio.
Io invece preferisco usare una versione modificata,  che ritengo più corretta, di quest’equazione perché stabilire un tasso medio di formazione stellare penso abbia poco senso, ci sono durante la vita di una galassia dei fenomeni di quiescenza delle nascite come delle esplosioni demografiche in nubi magari che sono troppo vicine al nucleo galattico che come vedremo possono influire sulle possibilità di sviluppo di forme di vita.
  • N* è la quantità di stelle aventi le caratteristiche chimico-fisiche adatte allo sviluppo di forme di vita.
  • LD è la frazione di spazio racchiusa da una bolla avente come raggio la stima della durata che queste civiltà evolute che siano in grado di trasmettere segnali nello spazio moltiplicata per la velocità della luce.
e ora viene il bello: perché riuscire a dare un valore limite a questi parametri non è affatto semplice e scontato, ma proviamoci: 

 

N*: si stima che nella Via Lattea siano presenti dai 200 ai 400 miliardi di stelle e, per essere generosi una volta tanto, prendiamo la cifra più alta; da questo valore togliamo le stelle più interne della galassia e le stelle multiple che non potrebbero dare orbite sufficientemente stabili ai loro eventuali pianeti (per cui niente pianeti come Tatooine di Star Wars); poi esiste un problema di metallicità (in astrofisica si intende per metallicità la quantità di elementi chimici più pesanti dell’elio) del sistema stellare da tenere in considerazione: una stella molto vecchia si è originata probabilmente da una nube di idrogeno primordiale , non contaminata quindi da precedenti esplosioni di supernova, per cui gli elementi pesanti sono assenti in quanto questi si formano durante il processo di fusione nucleare che dà energia alle stelle e, se non c’è il materiale per produrre pianeti, e non ci sono il carbonio e l’ossigeno per le strutture molecolari, ovviamente sarà impossibile in queste condizioni che si generi la vita, quindi diciamo che una stima presumibilmente corretta possa essere attorno ai 50 miliardi di stelle.

 

fp: la percentuale che una stella possa avere pianeti che le orbitano attorno è piuttosto alta, ammettiamo pure che più della metà delle stelle possa avere un sistema planetario residuo della sua formazione, quindi qui diamo valore 7/10=0,7.
ne: un pianeta che sia in grado di ospitare la vita quale la conosciamo deve avere una condizione orbitale stabile per un lungo periodo e ricevere la giusta quantità di energia che consenta l’esistenza dell’acqua allo stato liquido, elemento questo essenziale per le forme di vita a base di carbonio. Quindi l’ecosfera stellare potrà avere un piccolo raggio per le stelle di piccola massa e un raggio molto più grande per le stelle più massicce, ma quest’ultime sono inadatte all’evoluzione della vita visto che vivono solo qualche centinaio di milioni di anni, quindi ammettiamo un pianeta su dieci (come nel nostro sistema solare) rispetti queste caratteristiche e che una stella in media possa avere almeno 5 pianeti: 1/10 x 5 =0,5.
fl: abbiamo visto come la vita si sappia adattare a condizioni ambientali estreme e che quindi ovunque le si presentino occasioni possibili questa si sviluppi, ma anche altri fattori posso contribuire alla negazione di condizioni favorevoli per cui potremmo trovare che la salomonica proposta vita-si/vita-no al 50% sia ragionevole: allora 0,5.
fi: Qui però entriamo nel campo della filosofia: ma se diamo un sufficiente lasso di tempo dalla nascita delle prime forme di vita, prima o poi queste potranno solo evolvere in forme più complesse, come è successo sul nostro pianeta, con l’evoluzione dell’intelligenza o estinguersi o rimanere staticamente ad un livello primitivo, ma un delfino o un’orca sono senza dubbio animali intelligenti, però non potrebbero mai sviluppare una civiltà tecnologica come la conosciamo noi, basata sul fuoco, d’altronde società organizzate come quelle delle formiche o delle api non sono il frutto di una intelligenza senziente; quindi abbiamo due gruppi di tre opzioni ciascuno che supponiamo abbiano la stessa probabilità di accadere: (1/3=0,33)x(1/3=0,33)=0,1
fc: La storia dell’Homo Sapiens inizia circa 36-40 mila anni fa e le civiltà più antiche hanno solo 7-10 mila anni e in questo lunghissimo (per noi) lasso di tempo sono solo meno di 100 anni che abbiamo la tecnologia radio e che potrebbe essere presto soppiantata da tecnologie più sofisticate che fanno uso di fibre ottiche al posto delle usuali trasmisioni elettromagnetiche; anche i satelliti artificiali con le loro parabole direzionali rivolte verso di noi contribuiscono a limitare le radioemissioni involontarie dei broadcast radiotelevisivi nello spazio, ben presto potremmo far sentire la nostra voce nel cosmo solo se lo vorremmo, ma le altre eventuali civiltà extraterrestri vorranno comunicare con noi e se sì dove dovranno puntare i loro trasmettitori? mah… io qui suggerico solo un desolante 4 per mille usando la storia umana come riferimento e un 50% che altre civiltà abbiano intenzione di comunicare con noi (4/1000=0,004)x(5/10=0,5)=0,002.
fm: qui Drake secondo me ebbe una grande intuizione a introdurre questo parametro: in virtù di quello che si è detto al punto precedente, una civiltà che abbia intenzione di comunicare ad altre civilta intergalattiche la propria presenza dovrebbe mettere dei radiofari nello spazio circostante per non essere di ostacolo al suo progresso tecnologico, dato che un segnale radio per attraversare la galassia alla velocità della luce impiegherebbe 100 mila anni e il posto più logico dove mettere un segnale automatico è proprio nello spazio; però questo è un progetto tecnicamente ambizioso anche per una civiltà come la nostra: quindi anche qui diamo una probabilità su 4 che avvenga: ovvero 1/4=0,25.
LD: dato che la velocità della luce è finita, potremmo ascoltare un segnale proveniente da una civiltà nel frattempo oramai estinta, vuoi per cause naturali o per la stessa incuria e presunzione che ci ha portati spesso sull’orlo dell’autodistruzione durante la breve storia dell’umanità, ma supponiamo che la durata media di una civiltà possa essere di 10.000 anni, quindi sapendo che la nostra galassia ha un raggio di 50.000 anni luce la bolla sarà circa 2 decimi del volume della galassia(usiamo il concetto di bolla sferica impropriamente, in realtà la nostra galassia è un disco schiacciato di appena un migliaio di anni luce alle estremità): ovvero 0,2.
50.000.000.000 x 0,7 x 0,5 x 0,5 x 0,1 x 0,002 x 0,25 = 437.500
di potenziali civiltà di radioascoltatori nella nostra galassia in questo momento, ma attenti: questa è soltanto una stima basata su delle probabilità, quindi è possibile che il numero sia 10 volte superiore come migliaia di volte inferiore, un numero da prendere comunque come esercizio puramente accademico. Di queste però solo 2 decimi sarebbero a portata d’ascolto, per cui
437.500 x 0,2 = 87.500
Se poi vogliamo specularci ancora un po’ sopra potremmo dire che in base a queste stime la civiltà più prossima a noi potrebbe essere nel raggio di circa 270 anni luce, e ammesso che i primi segnali radiotelevisivi trasmessi dalla Terra di una certa potenza furono emessi soltanto nel 1939, probabilmente ancora ci vorranno 200 anni prima che ci ascoltino e altri 270 anni prima che ci arrivi il loro “ricevuto terrestri: vi stiamo ascoltando…

Dove sono l’omini verdi… (seconda parte)

L’uomo ha sempre amato credere nell’esistenza di entità a lui superiori in grado di influenzare il mondo circostante, siano essi esseri antropomorfi o ibridati con gli animali conosciuti, come ad esempio erano rappresentate le divinità egizie o gli dei dell’Olimpo greco, a cui venivano attribuite tutte le casualità e le causalità che gli accadevano; inventando così quindi una spiegazione plausibile ai fenomeni della natura che lo circondava: in questo modo nacquero le religioni.
Anche nelle religioni monoteiste esistono entità superiori analoghe, esse sono chiamate angeli e demoni a seconda del loro ruolo nella tragedia umana; il fenomeno UFO e degli alieni annessi è la ripetizione di questo bisogno di guida superiore traslata ai nostri giorni.
Queste credenze popolari hanno anche origine da una purtroppo scarsa cultura popolare che mescola indistintamente concetti scientifici a eventi apparentemente inspiegabili, storia antica e mitologia con concetti moderni, l’esoterismo e l’alchimia con la scienza, l’astrologia con la fisica. È chiaro quindi in questo bailamme di pseudocultura porre delle domande e dare delle risposte corrette è difficile se non proprio impossibile.
Il fenomeno UFO è stato cavalcato fin dall’inizio dagli apparati militari di tutto il mondo perché esso forniva un’ottima spiegazione per giustificare la visione accidentale di strumenti bellici segreti sfuggiti agli apparati di sicurezza, ed era un modo per distrarre la popolazione dalla paranoia bellica del periodo della Guerra Fredda, ne è testimonianza ad esempio l’ordine impartito da Stalin di abbattere qualsiasi oggetto non identificato entrasse nello spazio aereo del Patto di Varsavia e lo stesso analogo ordine che c’era nello schieramento NATO. Ovvio dire che qualsiasi oggetto non identificato se possibile era meglio recuperarlo intero, ma solo perché era importante conoscere fin dove la tecnologia avversaria si era spinta, quindi niente alieni o ufini ma solo tecnologie militari umane da proteggere e studiare.
Tutto questo parlare (cianciare avrebbe detto Leonardo da Vinci) nuoce alla vera ricerca scientifica sull’esistenza di altre forme di vita extraterrestri ed eventualmente alla scoperta di civiltà aliene: come potrebbe essere preso dall’opinione pubblica infatti un annuncio del genere?
Nel 1996, durante i festeggiamenti del ventennale delle missioni Viking su Marte, la NASA rese di dominio pubblico la notizia che un meteorite proveniente da Marte caduto in Antartide, presentava all’interno dei noduli fossili di magnetite che presumibilmente erano di origine batterica, quindi organica.
Mi ricordo di aver assistito ad un dibattito sul tema agli inizi del ’97 tenuto dalla locale sezione di astrofili su questo celebre metorite marziano che si chiama ALH84001.
Nel celebre dibattito mondiale che si era aperto, c’era chi aveva accolto la scoperta con entusiasmo e chi guardava con scetticismo l’annuncio: parlarne così, senza un dibattito scientifico alle spalle che dimostrasse senza ombra di dubbio l’esistenza di forme di vita extraterrestri nel nostro sistema solare, purché in epoche diverse dall’attuale poteva essere percepito come una ricerca dello scoop, del sensazionalismo e porre seri dubbi sulla serietà della ricerca scientifica; dall’altra parte gli entusiasti ponevano il non piccolo problema che a tener riservato il dibattito al’interno dell’ambiente accademico mondiale era altrettanto pericoloso perché oltre al dover tenere riservata la notizia, cosa non certo facile, c’era il pericolo di far passare la comunità scientifica come settaria, esoterica, proprio il contrario di quello che lo spirito della scienza dovrebbe sempre tenere: essere al servizio dell’intera umanità.
Il dibattito sul ALH84001 ancora non si è placato dopo 13 anni, ne è riprova l’attenzione dei media che ancora ne parlano, ma oramai l’opinione pubblica non ne è più appassionata come al momento dell’annuncio, anche perché la scoperta della prova di batteri su un sasso marziano piovuto dal cielo non è entusiasmante come lo è un avvistamento di un improbabile vascello alieno nel cielo.
(continua…)