Quante stelle ci sono nella Via Lattea?

In questo periodo sto portando avanti un altro progetto, per questo non aggiorno più spesso di quanto vorrei queste pagine. Essendo comunque questa l’era dei social network, su Facebook c’è una bellissima pagina che comunque io tengo aggiornata con articoli e notizie a cui potete far riferimento.
Tornando allo sviluppo dell’altro progetto, mi sono impantanato su un annoso problema che spesso i professionisti evitano come la peste, mentre i profani insistono a chiederlo: quante stelle ci sono nella Via Lattea?

The Milky Way

Il cuore della Via Lattea. Credit: Il Poliedrico

Guardando il cielo stellato da una località – sostanzialmente – priva di inquinamento luminoso in una notte di novilunio si riescono a scorgere tantissime stelle e una strana fascia un po’ più luminosa che da sempre chiamiamo Via Lattea. Questa è la nostra galassia, un agglomerato di miliardi di stelle (tra cui il nostro Sole) a forma di spirale e che a noi è concesso di vedere solo dalla sua periferia, di taglio e per giunta dall’interno. Già comprenderne la forma è stato un difficilissimo esercizio, un po’ come se dalla cima della cupola di S. Pietro cercassimo di capire la pianta della città di Roma e magari anche quanti abitanti abbia la città, nel caso volessimo rispondere alla domanda del titolo.
Ora, nessun censore con un po’ di sale in zucca si cimenterebbe in una impresa così ardua, ci sono sistemi molto più comodi, pratici e funzionali piuttosto che arrampicarsi in cima al Cupolone per capire com’è fatta Roma. Purtroppo gli astronomi non posseggono altri mezzi migliori per comprendere la nostra galassia se non quello di scrutare il cielo dalla Terra o dai sui immediati dintorni. Studiando i  moti delle stelle e degli ammassi globulari più lontani dal centro galattico si è potuta fare una stima dell’intera massa della Galassia in base alla Legge di Gravitazione Universale. A questo punto, studiando le altre galassie a noi più vicine e cercando quelle più simili come massa e luminosità si è potuto comprendere la morfologia della Via Lattea. Guardando solo da dentro non sarebbe stato possibile farlo.

Conoscere la massa totale della Via Lattea può fornirci una stima di massima delle stelle che raccoglie. Ma la massa di una qualsiasi galassia non è equamente distribuita nelle stelle e la nostra non fa eccezione.
Si parla di massa viriale 1 per una certa massa racchiusa entro un certo volume. Però a concorrere a questo parametro partecipa un po’ di tutto: stelle ormai morte da eoni, nubi di gas interstellare, piccoli corpi che non hanno potuto accendere le reazioni nucleari di fusione al loro interno e così via fino all’immancabile e sconosciuta materia oscura che permea ogni cosa in grado di produrre un campo gravitazionale.
In realtà il metodo comunque è semplice, possiamo testarlo con i parametri orbitali del Sole che dista dal centro galattico 8,33 kpc (un chiloparsec equivale a 3263 anni luce) [cite]http://arxiv.org/abs/0810.4674[/cite] e vi ruota attorno ad una velocità di 220 km/sec. e applicando le semplice Legge di Keplero \(M={d_o}^3/{p_o}^2\).  Esprimendo la distanza \(d_o\) in unità astronomiche ( \(1,72\times 10^9\)) e  il periodo orbitale in anni(\(2,33\times 10^8\)) si hanno: $$\frac{{1,72\times 10^9}^3}{{2,33\times 10^8}^2} \rightarrow 9,36\times 10^{10}$$ masse solari. Ciò significa che nel volume racchiuso dall’orbita del Sole ci sono qualcosa come ben 93 miliardi di masse solari. Va da sé che queste cifre sono approssimative, l’orbita del Sole non è proprio circolare e anche una minuscola differenza nei valori dei parametri da me usati qui sopra comporta stime di massa molto diverse.
In più la Via Lattea è molto più grande dell’orbita del Sole che si ritiene essere circa a metà strada tra il centro galattico e il limite stellare visibile che è approssimativamente intorno ai 17 kpc dal centro. Un calcolo più accurato richiederebbe che siano considerati anche gli effetti gravitazionali dovuti alla massa della Galassia esterna all’orbita del Sole, che poi non è poi così poca come si potrebbe essere portati a credere. Infatti misurando la velocità relativa delle galassie satellite della Via Lattea è stato calcolato che la maggior parte della massa della Galassia non è concentrata nei suoi confini visibili ma pare che sia diffusa in uno stato di gas caldissimo che si estende per almeno altri 100 kpc [cite]http://arxiv.org/abs/1205.5037[/cite].

NGC 7331 (qui in alto) è spesso citata come una galassia gemella della Via Lattea. In basso invece la forma dedotta da William Herschel nel 1785. All'epoca si credeva che il Sole fosse nei pressi del centro.

NGC 7331 (qui in alto) è spesso citata come una galassia gemella della Via Lattea. In basso invece la forma dedotta da William Herschel nel 1785. All’epoca si credeva che il Sole fosse nei pressi del centro.

Questo è ben evidente nelle altre galassie, dove la stima della massa viriale è ben diversa (tra dieci e le cento volte tanto) da quella che appare invece dalla sola massa stellare visibile che si può calcolare usando il metodo che si rifà alla ben nota correlazione tra massa e luminosità (\(M/L\)) che vale in linea di massima per le singole stelle, ma che in questo caso si può usare con una buona approssimazione anche per le galassie, tenendo ben presente però che a questa scala di distanze solo le stelle più luminose contribuiscono alla luce galattica.

Così si hanno ben due stime molto diverse della massa di una galassia, una viriale che tiene conto di tutta la materia (barionica e non barionica) presente e quindi stelle, gas e polveri, pianeti e corpi substellari, oggetti ormai degeneri e buchi neri, e così via, che è diretta funzione del volume studiato; e quella bolometrica, legata cioè alla luminosità complessiva della galassia ma che, per le galassie più vicine, offre forse un quadro più preciso della massa esclusivamente stellare, a patto di conoscere con buona approssimazione il grado di estinzione della luce delle sorgenti più deboli e  una ragionevole stima della percentuale delle stelle più visibili rispetto al totale delle altre.
Questi valori sono dipendenti dal tasso di formazione stellare, le quantità di gas e polveri coinvolte nel fenomeno dell’estinzione della luce, l’età della galassia e così via, ma che per fortuna possiamo vedere e calcolare, essendo noi stessi abitanti di questa Galassia. Un ottimo strumento del genere si chiama IMF (Initial Mass Function) o funzione di massa iniziale 2, una funzione empirica (basata cioè principalmente sulle osservazioni) che descrive la distribuzione delle masse in un gruppo di stelle. Infatti tutte le proprietà principali (energia irradiata o luminosità, volume, massa, raggio etc) e l’evoluzione di una stella sono strettamente legate alla sua massa e questo rende l’IMF un eccellente strumento nello studio di grandi quantità di stelle [cite]http://adsabs.harvard.edu/doi/10.1086/145971[/cite].
Nel corso degli anni il lavoro originale di Salpeter ha subito modifiche, sono state aggiunte delle sostanziali migliorie ma il concetto è rimasto lo stesso: partite da una stima accurata della luminosità galattica nei dintorni del Sole legata ad una coerente funzione di massa e da lì estrapolare il numero delle stelle presenti nella Via Lattea.

[table id=69 responsive=scroll/]

Grafico ricavato dalla tabella qui sopra.

Grafico ricavato dalla tabella qui sopra.

Far coincidere ora tutti questi dati grezzi e apparentemente incoerenti può contribuire a risolvere il rebus iniziale ma non dà una risposta definitiva che può essere significativamente diversa a seconda dei valori espressi dalle diverse campagne osservative.
Il modello qui preso in considerazione indica che tra il 30 e il 40% dell’intera massa della Via Lattea entro i 2 kpc dal centro sia racchiusa nel suo rigonfiamento centrale (bulge in inglese), mentre la massa dell’alone sia almeno un ordine di grandezza più piccola rispetto a questo. Il peso del Buco Nero Centrale e del gas del suo alone sono inclusi nella massa viriale totale (\(1,26\times^{12}\)), come tutti gli altri oggetti che emettono poca o nulla radiazione elettromagnetica, come le stelle ormai morte e la materia non barionica che rappresenta circa \(4\times 10^{08}M_{\odot}\) (McMillan, 2011 [cite]http://arxiv.org/abs/1102.4340[/cite]).
Una serie di calcoli basata sulla distribuzione delle masse stellari nei pressi del Sole e applicata alle componenti principali della Galassia (zona centrale, disco e alone), restituiscono grossomodo i valori comunemente accettati per la Via Lattea: \(1,88\times 10^{11}\) non lontano quindi dai \(2\times 10^{11}\)  (200 miliardi) comunemente accettati in letteratura.
Ovviamente questi numeri sono il risultato di semplificazioni e ipotesi che comunque potrebbero non essere del tutto corrette, come assumere che la IFM sia ovunque la stessa quando invece potrebbe essere diversa tra le varie regioni della Galassia e le Popolazioni Stellari dominanti (l’alone e buona parte del nucleo centrale sono composti da stelle di Popolazione II, il disco sottile è dominato dalle stelle di Popolazione I mentre la parte più esterna del disco, conosciuta come disco spesso, è più eterogeneo).

Contare quante stelle ci sono nella Via Lattea anche se è un lavoraccio comunque si può, e qualcuno deve pur farlo. Ma il rischio di perdere il conto è molto alto, ci vuole molta pazienza: 1 … 2 … 3 …


Note:

La curiosa storia della curva di luce di KIC8462852, Alieni? Non credo

Immagine artistica della pulsar PSR B1257+12 con i pianeti. Credit: Wikipedia

Immagine artistica della pulsar PSR B1257+12 con i pianeti. Credit: Wikipedia

Come avevo scritto nel mese scorso e poi successivamente su un mio post sulla piattaforma di giornalismo sociale Medium.com, che peraltro vi invito a seguire, la storia di  KIC 8462852 (intanto soprannominata  Tabby’s Star (Stella di Tabby), in onore all’astronoma Tabetha Boyajian che per prima si era impegnata in questa ricerca) rappresenta un’autentica sfida per gli astronomi e gli appassionati.
Nei giorni scorsi non si sono fatti attendere i risultati della campagna di ascolto del SETI Institute, che aveva impegnato l’Allen Telescope Array per studiare la stella alla ricerca di eventuali radiosegnali extraterrestri [cite]http://goo.gl/2fhrze[/cite] emessi da un’ipotetica struttura artificiale supposta dall’astronomo Jason Wright per spiegare le anomalie nella curva di luce dell Stella di Tabby.
Dopotutto una civiltà avvastanza evoluta da considerare di costruire uno sciame di Dyson avrebbe accesso a un livello di \(1\times 10^{27}\) watt di energia. Anche supponendo che una piccolissima frazione fosse dedicata alle trasmissioni omnidirezionali (come ad esempio dai radiofari), questi dovrebbero comunque essere rivelabili. Purtroppo l’analisi dei dati dimostrano che tra le frequenze di 1 e 10 Ghz che dal sistema della stella non proviene alcun segnale rilevabile. Questo automaticamente non può escludere a priori l’ipotesi di Wright, in fondo la struttura potrebbe essere stata abbandonata millenni fa oppure i Costruttori usano una tecnologia diversa dalle onde elettromagnetiche per comunicare o anche più semplicemente abbiamo ascoltato le frequenze sbagliate.
Ma come l’astronomo del SETI Seth Shostak ha fatto notare, “La storia dell’astronomia ci dice che ogni volta che abbiamo pensato di aver trovato un fenomeno dovuto alle attività di extraterrestri (la storia dei Little Green Man rivelatesi poi un fenomeno assolutamente naturale – le pulsar – ne è un esempio n.d.a.), ci sbagliavamo. Ma anche se è molto probabile che lo strano comportamento di questa stella sia dovuto alla natura piuttosto che agli alieni, la prudenza chiede di controllare anche queste ipotesi.

Simulazione della rapida rotazione della stella Altair ottenuta con lo strumento MIRC del C.H.A.R.A. di Mt. Wilson. qui sono evidenti gli effetti del teorema di von Ziepel sulla relazione fra gravità superficiale e flusso radiativo di una stella.

 

rotatorMa forse il comportamento della Stella di Tabby potrebbe essere ancora più banale di quanto non si sia pensato. L’idea l’ha suggerita James Galasyn sul suo blog Desdemonadespair.net e ripresa da Paul Gilster sul suo Centauri-Dreams.
L”ipotesi, a mio avviso molto interessante, si rifà ad una serie di documenti [cite]http://goo.gl/tMTRre[/cite] [cite]http://goo.gl/82ewqR[/cite] riguardo a PTFO 8-8695b, un ipotetico pianeta supposto orbitare attorno ad una stella di pre-sequenza principale particolarmente schiacciata ai poli dalla sua alta velocità di rotazione 1. Ora la conferma di questo pianeta non sembra ancora confermata ma gli studi sulle flessioni di luce indotte hanno prodotto dei risultati molto interessanti.
Quando una stella è dotata di un moto rotatorio importante (come mostra il filmato qui sopra e l’immagine qui a fianco) la stella subisce un aumento delle dimensioni in direzione del suo equatore e uno schiacciamento dei poli dovuto alla forza centrifuga.  Dal punto di vista fisico questo comporta che in prossimità dei poli la stella appaia più luminosa che all’equatore tanto più è basso il suo periodo di rotazione; questo fenomeno si chiama Oscuramento Gravitazionale.
Senza dilungarmi troppo su questo curioso fenomeno una tipica curva di luce di un transito ha la classica forma a U più o meno pronunciata dalla distanza del piano dell’osservatore rispetto al piano dell’orbita 
e più o meno profonda dovuta alle dimensioni del pianeta rispetto alla stella [cite]http://goo.gl/RDWPKB[/cite].

Geometria della precessione nel caso di una stella oblata (in rosso) con un singolo pianeta in orbita (blu).  Le frecce indicano la direzione precessione di precessione "positivo" nella matematica. In realtà la precessione è negativo, cioè, retrograda, o in senso orario come visto da sopra il polo nord stellare.

Geometria della precessione nel caso di una stella oblata (in rosso) con un singolo pianeta in orbita (blu).  Le frecce indicano la direzione precessione di precessione “positivo” nella matematica. In realtà la precessione è negativo, cioè, retrograda, o in senso orario come visto da sopra il polo nord stellare.

Ma KIC 8462852 possiede un periodo di rotazione bassissimo, appena 21 ore, sufficienti però a distorcere significativamente la forma della stella e rendere importanti gli effetti previsti dall’oscuramento gravitazionale. Noi ancora non conosciamo la direzione dell’asse di rotazione della stella e se magari possiede un pianeta in orbita abbastanza stretta e con sufficiente massa da provocare un effetto di precessione, e né se giaccia su un piano orbitale molto diverso dalla linea dell’osservatore 2. Magari la stella possiede anche un campo magnetico piuttosto inclinato rispetto al suo asse di rotazione da provocare aperiodici episodi di hotspot o di macchie stellari persistenti lungo la linea dell’osservatore. Una combinazione di questi fattori potrebbe spiegare le irregolarità e con qualche sforzo anche l’ampiezza dei picchi negativi di luminosità come quelli registrati.

Le curve di luce estrapolate da Jason Barnes e il suo gruppo per il caso PTFO 8-8695.

Le curve di luce estrapolate da Jason Barnes e il suo gruppo per il caso PTFO 8-8695.

Anche se attorno a PTFO 8-8695 non è stato – forse ancora – rivelato alcun pianeta, i metodi di indagine e di studio del prof. Barnes possono rivelarsi preziose per risolvere il mistero delle stravaganti curve di luce della Stella di Tabby.


Note:

 

KIC 8462852, una stella piuttosto bizzarra

Può suonare strano ma i primi a sperare che si trovino tracce di vita aliena non sono solo gli ufologi (alcuni di loro sono davvero in gamba e fanno un’opera di disinganno davvero notevole) ma gli astronomi. Significherebbe il compimento di quel pensiero che da Anassagora, (V secolo a.C.) attraversando 2500 anni di storia è giunto fino a noi ancora irrisolto: “siamo davvero soli nell’Universo?”.

Credit Gianluca Masi - VirtualTelescope

Credit Gianluca Masi – VirtualTelescope

Nel 1967 l’allora studentessa Jocelyn Bell e il suo relatore Antony Hewish scoprirono uno strano segnale pulsato nel cielo che non sembrava essere prodotto da alcuna interferenza di origine terrestre, ma che piuttosto appariva provenire da un punto preciso del cielo.
Quella sorgente, ora nota col poco esotico nome di PSR B1919+21, fu chiamata LGM-1 dall’acronimo di Little Green Men (Piccoli Omini Verdi). All’inizio infatti Bell e Hewish non riuscivano a spiegarsi quella strana pulsazione di 1,33 secondi e specularono sulla natura artificiale del fenomeno, attribuendola appunto a ipotetici Piccoli Omini Verdi. In seguito venne compreso che quello che sembrava un radiofaro extraterrestre era in realtà un fenomeno prettamente naturale abbastanza comune nell’Universo. Oggi se ne conoscono tantissime, le chiamiamo pulsar, e sappiamo che sono prodotte dall’interazione del campo magnetico delle stelle di neutroni (oggetti super compatti, residuo di supernovae di tipo II, aventi la massa del Sole ridotta in uno spazio di pochi chilometri) con la loro rotazione.


[table id=67 /]

In questi giorni sta accadendo un po’ lo stesso. Tutto parte dal telescopio spaziale Kepler, che per oltre quattro anni ha misurato la luminosità di oltre 150 mila stelle in uno spazio di appena 100 gradi quadrati di cielo in direzione della costellazione del Cigno. Tra queste c’è una stella, TYC 3162-665-1, ribattezzata nella nomenclatura di Kepler come KIC 8462852 [cite]http://goo.gl/h5G4Dr[/cite].
La cosa curiosa di questa stella è la sua bizzarra curva di luce che mai ci si aspetterebbe da una stella di sequenza pincipale così comune (circa il 22% della popolazione galattica è di tipo F).

[gview file=”https://ilpoliedrico.com/wp-content/uploads/2015/10/curva-di-luce.pdf” height=”600px” width=”99%”]/span>

Come si vede dalla tabella qui a fianco KIC 8462852 è una stella in sequenza principale, un po’ più  massiccia e calda del Sole. Una stella come molte altre, se non fosse che, secondo Kepler, è soggetta a aperiodici cali di luce molto intensi, che vanno dal 15 fino al 22%, come dimostrato qui sopra (i dati sono comunque pubblici e sono disponibili qui [cite]http://goo.gl/ywDlLc[/cite]).
Nei miei precedenti articoli [cite]http://goo.gl/738Z1p[/cite] ho descritto come calcolare le dimensioni di un esopianeta partendo dal calo di luce registrato. In questo caso specifico per giustificare un calo di circa il 20% come quelli talvolta registrati occorre un oggetto grande circa sette decimi del Sole: circa 492 mila chilometri di raggio. Una cosa enorme!
Inoltre, se avreste la costanza di guardare la mole dei dati pubblici di Kepler su questa stella di cui ho fornito il link, vedreste che ci sono diverse decine di questi misteriosi e potenti cali e che non sembrano affatto periodici.  In più, se fossero causate da uno o più oggettti sferici, ci si aspetterebbe che la forma di questi affievolimenti fosse regolare. Invece no, la forma che Kepler rivela che questi sono irregolari anche come forma.
Eliminata l’ipotesi di guasto strumentale, dopotutto solo KIC 8462852 ha restituito questi straordinari solo per questa stella, non resta che cercare altre spiegazioni all’interno di quel sistema stellare.
Come si evince dal documento PDF qui sopra, è evidente il segnale seghettato dovuto alla veloce rotazione della stella, solo 21 ore per compierne una; l’irregolarità presente in questo segnale forse è dovuta alla presenza di macchie stellari anche se questo non giustifica tutto il resto.
Un altro aspetto da non sottovalutare è che KIC 8462852 è stella di classe F3, non è quindi longeva quanto il Sole, può restare nella Sequenza Principale meno di 3 miliardi di anni circa.

Ipotesi naturali

La prima ipotesi che viene in mente è che la stella sia una variabile irregolare, ma la sua presenza nella sequenza principale cozza con tutto ciò che sappiamo sulle stelle variabili. Le variabili intrinseche (cioè non dovute alla presenza di altri compagni stellari come Algol) sono quelle stelle in cui le variazioni di splendore sono dovute a variazioni nelle condizioni fisiche come la temperatura, la densità o il volume.  In genere queste condizioni si verificano quando la stella sta per abbandonare – o lo ha già fatto – il ramo principale del diagramma di Hertzsprung-Russell, ma non sembra che questo sia il caso di KIC 8462852. Ipotesi scartata.
Al momento della loro nascita tutte le stelle sono circondate dai resti della nebulosa protostellare, il che potrebbe  spiegare benissimo gli improvvisi e irregolari sbalzi di luce registrati. Però  in tal caso dovrebbe essere presente anche un eccesso nella radiazione infrarossa dovuto alla presenza di queste polveri, cosa che le immagini riprese nell’infrarosso escludono (vedi il documento). Anche questa ipotesi è scartata.
La presenza di giganteschi pianeti che tutti insieme riescono a coprire almeno il 40% della superficie del disco è improponibile, e comunque il segnale prodotto sarebbe completamente diverso da quello registrato e una analisi armonica avrebbe rivelato la loro presenza. Altra ipotesi scartata.

Un incontro ravvicinato

Allora cosa provoca quegli strani picchi di luce? Semplicemente non lo sappiamo, potrebbero essere il risultato di una collisione planetaria che ha sparso i detriti in orbita alla stella, ma anche in questo caso la luce della stella dovrebbe riscaldare queste polveri tanto da restituire un eccesso di radiazione infrarossa, ma così appunto non è, nessun eccesso IR è stato finora registrato.
Un’altra idea potrebbe essere che la sua nube di Oort, o parte di esssa, stia in qualche modo collassando verso la stella e che miriadi di comete stiano precipitando verso di essa. Molte comete sublimerebbero ancor prima di raggiungere il periastro e verrebbero spazzate via come gas e polvere dal vento stellare, dando origine all’irregolarità dei picchi. Così si spiegherebbero le strane irregolarità nel flusso luminoso e forse anche la non presenza di una emissione IR in eccesso, ma per giustificare così i cali di luce della stella occorrono tante, ma tante comete in caduta contemporaneamente.
Una analisi della stella nell’infrarosso effettuata con l’United Kingdom Infrared Telescope (UKIRT) alle Hawaii mostra una lieve protuberanza che da altre analisi effettute con l’ottica adattiva all’infrarosso del telescopio Keck (banda H a 1,65 micron) si mostra essere una debole stellina  di classe M2V, grande cioè appena 4 decimi del Sole. Supponendo che essa sia alla stessa distanza di KIC 8462852 allora la distanza tra i due astri risulta essere di sole 885 UA, circa 132 miliardi di chilometri. Ancora non esistono dati sufficienti per stabilire se le due stelle siano legate gravitazionalmente o meno; ammettendo comunque che non lo fossero e che la nana rossa viaggiasse a 10 chilometri al secondo attraverso il sistema solare principale, le occorrerebbero 400 anni per attraversarlo tutto, un tempo quindi abbastanza lungo per portare scompiglio alla nube di Oort di KIC 8462852 fino forse farla collassare almeno in parte verso la stella principale, giustificando così la sua bizarra curva di luce .

Ipotesi artificiale

Jason Wright, un astronomo della Penn State University ha invece una teoria ancora più bizzarra: megastrutture artificiali in orbita alla stella capaci di catturarne parte dell’energia per renderla disponibile ad una civiltà aliena che si attesterebbe intorno al II grado della scala di Kardashev, capace cioè di manipolare l’energia di un’intera stella [cite]http://goo.gl/Egh6aU[/cite].
Non necessariamente, come da molti siti indicato a sproposito, questa o questte strutture dovrebbero dar luogo a una Sfera di Dyson, una struttura sferica che avvolge tutta la stella per raccoglierne tutta l’energia: primo, è assai improbabile trovare all’interno dei sistemi stellari tutta la materia necessaria per avvolgere completamente la stella ad una distanza utile da comprendere una ecosfera abitabile, e anche se fosse, molto probabilmente questo sarebbe un guscio troppo sottile per essere funzionale (almeno per i nostri standard tecnologici). Poi c’è l’eterno inconveniente delle leggi della termodinamica che spesso troppi tendono a dimenticare: affinché ci sia un lavoro deve esserci una differenza di potenziale, il che significa che tutta l’energia deve essere reirradiata nello spazio esterno nella sua forma più degradata 1, cosa che sicuramente non sarebbe passata inosservata alle diverse survey nell’infrarosso o ai radiotelescopi nelle lunghezze d’onda maggiori [cite]http://goo.gl/tMH1yF[/cite].
Strutture ad anello o specchi sparsi nelle varie orbite sarebbero strutture molto più facili da costruire e più funzionali rispetto a una Sfera di Dyson e, se complessivamente fossero abbastanza grandi, in questo caso almeno 7,60 x 1011  km2, ovvero 760 miliardi di chilometri quadrati, potrebbero giustificare questi cali di luce, ma lo stesso dovrebbe essere presente un picco IR per giustificare la radiazione degradata riemessa nello spazio.
Infine c’è l’età della stella, che per una stella grande 1,6 volte il Sole è comunque ridotta a un terzo. Anche ammettendo l’esistenza di un pianeta adeguato alla vita in un’orbita simile a quella di Marte (ricordo che la stella è più calda del Sole e quindi anche l’ecosfera è un po’  più grande della nostra) e con due terzi di vita della stella alle spalle (2 miliardi di anni), esso è probabilmente ancora troppo giovane perché possa ospitare forme di vita intelligenti da dar luogo ad una civiltà così evoluta da costruire gigantesche strutture artificiali in orbita alla loro stella. Si potrebbe obbiettare che questi costruttori potrebbero provenire da qualche altra parte, ma anche questa è solo una giustificazione che finisce per complicare quella precedente.

Conclusioni

Jason Wright ha fatto bene a pubblicare su ArXiv le sue speculazioni [cite]http://goo.gl/rSQ26H[/cite] e anche a citare il caso di KIC 8462852 tra i casi che richiedono più attenzione. È comunque sempre giusto prendere scientificamente in considerazione ogni ipotesi, nessuna esclusa.
Ma qui sempre di ipotesi si tratta, non di certezze come purtroppo in questo momento molti altri siti e media – anche autorevoli – stanno facendo. Anche se l’ipotesi del collasso della nube di Oort della stella appare piuttosto striminzita, per ora è la migliore che si possa fare. Far passare per vera l’esistenza di gigantesche strutture artificiali intorno alla stella solo sulla base che le altre ipotesi finora postulate sono deboli, non è fare scienza. Fin quando l’ipotesi di Wright rimane solo un’altra ipotesi, spacciarla per vera è un insulto all’intelligenza.
Solo il tempo, e altri dati, potrannno darci una risposta sensata; le speculazioni fatte a caso giusto per scroccare un click o un like sui social network no.

Global Warming: non è il Sole

Figura 1 - "Lo sport su un fiume ghiacciato" di Aert van der Neer Durante il Minimo di Maunder, diventò alquanto popolare pattinare sui fiumi gelati, come in questo dipinto. Il fiume è il Tamigi.  (Credit:l Metropolitan Museum of Art)

Figura 1 – “Lo sport su un fiume ghiacciato” di Aert van der Neer Durante il Minimo di Maunder, diventò alquanto popolare pattinare sui fiumi gelati, come in questo dipinto. Il fiume è il Tamigi. (Credit:l Metropolitan Museum of Art)

Esiste una certa correlazione tra il numero di macchie solari e la temperatura media del pianeta.
Il Sole è la fonte di energia che fa muovere l’intera atmosfera e  che quindi è in grado di determinare sia il tempo a breve termine (vedi le stagioni) che il clima nel lungo periodo. Pertanto è ovvio che qualsiasi cambiamento  nel tasso di energia emessa dal Sole e ricevuta dalla Terra è in grado di modificare il clima. Esiste un equilibrio dell’energia emessa dal Sole alla distanza della Terra, è la temperatura di equilibrio è di soli 255 kelvin, pari a -18° centigradi; questa sarebbe la temperatura se il pianeta non avesse una atmosfera in grado di trattenere il calore, cosa che invece per nostra fortuna ha. Infatti la temperatura media della Terra è ben più alta perché una parte della radiazione solare è trattenuta dai gas che compongono l’atmosfera, mentre complessivamente il pianeta riemette nello spazio una radiazione che corrisponde alla sua temperatura media.
Ma sappiamo anche che la temperatura media del globo non è affatto costante: variazioni nell’albedo (percentuale tra energia ricevuta e riflessa nello spazio), nell’inclinazione dell’asse di rotazione rispetto all’eclittica, variazioni nella composizione atmosferica, vulcanismo etc. per la Terra, mutazioni sulla quantità di energia irradiata dal Sole, come flares, macchie solari, vento solare etc. possono alterare il bilancio energetico terrestre e con questo la sua temperatura media.
Tra il 1614 e il 1715 il Sole manifestò un singolare periodo di quasi totale assenza di macchie solari (quiescenza). Questo coincise con un altrettanto singolare periodo di freddo in Europa e nel Nord America, gli unici luoghi dove i dati di temperatura erano presi con una certa continuità. Nel resto del mondo invece i dati di quel periodo erano ancora troppo discontinui per avere una certa validità scientifica. Quel periodo oggi è indicato come Minimo di Maunder.

Figura 2- ricostruita la media decennale del numero di macchie solari per il periodo 1150 BC-1950 AD (linea nera). L'intervallo di confidenza al 95% è indicato dallo sfondo grigio e il numero di macchie solari misurate direttamente sono mostrate in rosso. Le linee tratteggiate orizzontali delimitano i confini delle tre modalità suggerite (Grandi Minimi, regolari, e Grandi massimi) come definito da Usoskin et al.

Figura 2- ricostruita la media decennale del numero di macchie solari per il periodo 1150 BC-1950 AD (linea nera). L’intervallo di confidenza al 95% è indicato dallo sfondo grigio e il numero di macchie solari misurate direttamente sono mostrate in rosso. Le linee tratteggiate orizzontali delimitano i confini delle tre modalità suggerite (Grandi Minimi, regolari, e Grandi massimi) come definito da Usoskin et al.

A partire dalla fine del Minimo di Maunder, la presenza di macchie solari durante il ciclo undecennale del Sole è tornato a crescere, fino a registrare un picco, chiamato il Grande Massimo Moderno, tra il 1950 e il 2009.
Per registrare la presenza delle macchie solari gli astronomi si avvalgono di due metodi di indagine diversi: il Wolf Sunspot Number (WSN), messo a punto da Rudolf Wolf nel 1856 che combina il numero delle macchie solari col numero dei gruppi di macchie presenti sulla superficie del Sole, e il Group Sunspot Number (GSN), un metodo di calcolo che si basa unicamente sul numero di gruppi di macchie solari visibili, pensato per essere meno influenzato dalle singole interpretazioni dell’osservatore (meno rumore) rispetto alla precedente numerazione di Wolf e che permette di utilizzare anche le osservazioni più antiche fatte attraverso uno strumento ottico (prima metà del XVII secolo).
Questi due diversi metodi di calcolo producono risultati assai diversi. Ad esempio il GNS suggerisce che negli ultimi 300 anni il numero dei gruppi di macchie solari è in continua crescita fino al presunto Grande Massimo Moderno, in netto contrasto con i dati elaborati col metodo di calcolo di Wolf.
Questo andamento di continua crescita dell’attività solare evidenziato dal metodo GNS viene spesso indicato come l’unico responsabile del riscaldamento climatico da parte dei negazionisti del Global Warming perché andrebbe a modificare proprio il bilancio energetico ricevuto dalla Terra dal Sole.
Un gruppo di scienziati guidato da Frédéric Clette, dell’Osservatorio Reale del Belgio, Edward Cliver del National Solar Observatory e Leif Svalgaard dell’Università di Stanford hanno cercato di capire perché i due metodi apparivano così incongruenti dopo una certa data e hanno scoperto che le discrepanze tra la WSN e GSN erano provocate da un grave errore di calibrazione nel sistema GSN.
La soluzione di questo problema, il Sunspot Number Version 2.0 1, è stata presentata alla XXIX Assemblea Generale dell’Unione Astronomica Internazionale a Honolulu (3-14 agosto 2015) e corregge tutte le discrepanze tra i due metodi, mostrando che non c’è stato nessun reale aumento progressivo nel numero dei gruppi di macchie solari dal XVIII secolo in poi [cite]http://www.sidc.be/silso/datafiles[/cite]. Questo significa che dalla fine della quiescenza che corrispose al Minimo di Maunder, il flusso energetico solare è rimasto costante. Questo fa decadere l’ipotesi che il Global Warming sia dipeso dall’attività solare in aumento, ma allora cos’è che lo provoca?

Le analisi delle bolle d'aria intrappolate in antichi ghiacciai svelano la quantità di \1(CO_2\) presente nell'atmosfera nel passato. Durante le glaciazioni era tra i 180-200 ppm mentre durante le interglaciazioni non superava i 280 ppm. Questo valore è stato superato intorno al 1950 e ancora non si è arrestato raggiungendo i 400 ppm intorno al 2014. Credit: National Oceanic and Atmospheric Administration.

Le analisi delle bolle d’aria intrappolate in antichi ghiacciai svelano la quantità di \(CO_2\) presente nell’atmosfera nel passato. Durante le glaciazioni era tra i 180-200 ppm mentre durante le interglaciazioni non superava i 280 ppm.
Questo valore è stato superato intorno al 1950 e ancora non si è arrestato raggiungendo i 400 ppm intorno al 2014.
Credit: National Oceanic and Atmospheric Administration.

Come ho detto prima, il bilancio energetico della Terra può che essere alterato da due parti: dal lato Sole con l’energia irradiata, e dal lato Terra con l’energia trattenuta. I vulcani espellono quantità incredibili di aerosol e polveri nell’alta atmosfera col risultato di raffreddare temporaneamente il pianeta. L’albedo modifica la quantità di energia riflessa dal pianeta ma ad un aumento medio di temperatura corrisponderebbe in aumento del tasso di evaporazione degli oceani e quindi della copertura nuvolosa (effetto di feedback). Resta un solo altro indiziato primario: la composizione chimica dell’atmosfera; in particolare un gas: l’anidride carbonica, passata da meno di 280 ppm dell’era pre-industriale ai 400 ppm di oggi. L’anidride carbonica è in grado di trattenere la luce solare e di riemetterla a lunghezze d’onda maggiori, dove l’atmosfera è opaca.
Ecco spiegato qual’è la causa del Riscaldamento Globale, ma anche cosa la provoca: le emissioni antropiche di \(CO_2\) nell’aria che sono aumentate da quando l’umanità ha imparato ad usare le fonti di energia fossile. Più o meno le stesse quantità di anidride carbonica che gli alberi avevano sottratto dall’aria nell’arco di milioni di anni sono state liberate in appena due secoli di utilizzo dei combustibili fossili.

Il nuovo Sunspot Number Version 2.0 ha già saputo mostrarci che riguardo alle mutazioni climatiche in atto stavamo prendendo una sonora cantonata, mentre adesso si renderà necessaria una rilettura dei cicli climatici registrati nelle carote di ghiaccio e negli anelli degli alberi. Questo permetterà agli scienziati di estrapolare la storia dei cambiamenti climatici su scale temporali ben più lunghe e precise di quelle attuali, tutti strumenti necessari per lo sviluppo di nuovi e più congrui modelli climatici necessari per curare la febbre del Pianeta.


Note:

Giganti nell’universo locale: chi sono e come si sono formati?

 

Ancora una volta il Prof. Danilo Marchesini della Tuft University di Boston ha onorato il Dipartimento di Fisica dell’Università di Siena con un’altra sua conferenza dedicata questa volta alle galassie ellittiche giganti. Volendo potremmo considerarla come una seconda puntata della conferenza scorsa [cite]http://ilpoliedrico.com/2014/08/caccia-mostri-nascita-delle-galassie-massicce-delluniverso.html[/cite].
Ringrazio l’Università di Siena e la persona di Alessandro Marchini per aver reso pubblico  il video dell’incontro.
Buona visione.

 

La Zona Galattica Abitabile

La quasi quotidiana scoperta di pianeti extrasolari pone il problena di dove guardare per trovarne di simili alla Terra [cite]http://goo.gl/kgCavI[/cite] potenzialmente in grado di sostenere la vita. Per i sistemi planetari si parla di Zona Goldilocks o Circumstellar Habitable Zone  (CHZ) [cite]http://goo.gl/gnyLKr[/cite] ma è da supporre che analoghe considerazioni valgano anche le galassie.

 

lifeFondamentalmente lo sviluppo della Vita complessa richiede che almeno tre punti siano soddisfatti:

 

  1. La presenza di una fonte di energia costante per tempi cosmologici (oltre il miliardo di anni (\( 1\  G_{yr}\)).
  2. Elementi pesanti necessari a formare pianeti di tipo terrestre [cite]http://goo.gl/dYFao2[/cite].
  3. Ambiente sufficientemente al riparo dalle radiazioni più nocive che potrebbe mettere a rischio ogni forma di vita e la sua formazione.

 

In base a questi vincoli si deduce che il confine interno di una Galactic Habitable Zone (GHZ) è delimitato dalle perturbazioni gravitazionali e radiativi del nucleo galattico che sono di ostacolo alle biosfere planetarie stabili, mentre il limite esterno è fissato dall’indice minimo di metallicità  1 necessario alla formazione dei pianeti [cite]http://goo.gl/dYFao2[/cite]. Pertanto è evidente di come la GHZ sia vincolata dalla morfologia, evoluzione chimica ed età delle popolazioni stellari della galassia.

Una fonte di energia costante: le stelle

img_9186Una fonte costante e continua di energia sono le stelle durante la loro permanenza nella Sequenza Principale. Ma non tutte le stelle possono considerarsi adatte a sostenere la vita come la conosciamo. Le stelle più massicce hanno un ciclo vitale molto breve: dai 200 mila anni di una Wolf-Rayet con una massa superiore alle 20 \(M_{\odot}\) fino ai 3 \(G_y\) per le F0 (1,6 \(M_{\odot}\)).
Ma non è solo una questione di ciclo evolutivo: certi studi ampiamente discussi sul sito gemello [cite]http://goo.gl/7waC7J[/cite] indicano una certa correlazione tra la massa stellare e la possibilità di possedere un sistema planetario. In pratica le stelle migliori ad ospitare un sistema sono stelle di massa inferiore a 1,5 -1,6 \(M_{\odot}\). Queste sono stelle di taglia medio-piccola e piccola che possono garantire almeno 4 \(G_y\) e oltre di permanenza nella Sequenza Principale e rappresentano almeno i 70 -75% delle stelle in una galassia alla stesso stadio evolutivo della nostra.

Il ruolo della metallicità delle stelle

La nebulosa “Occhio di Gatto” generata da una stella gigante tipo AGB.

La nebulosa “Occhio di Gatto” generata da una stella gigante tipo AGB.

La vita come la conosciamo è basata sull’esistenza di tanti elementi chimici più complessi dell’idrogeno ed elio, che gli astronomi chiamano per semplicità metalli, che vengono creati all’interno di stelle di grande massa e che vengono rilasciati nello spazio alla morte di queste con immani esplosioni di supernova e ipernova.  Senza questi metalli non possono formarsi i pianeti rocciosi, le atmosfere complesse, l’acqua e così via. Per comprendere meglio il ruolo dei metalli nella delimitazione di una GHZ è necessario partire dall’inizio della storia evolutiva delle galassie.
Tralasciando l’importante ruolo della materia non barionica 2 nella formazione delle galassie, dal collasso delle imponenti nubi di gas primordiale protogalattico composto unicamente da idrogeno e deuterio si formò una prima generazione di stelle: quelle più massicce si stabilirono presso il centro gravitazionale, mentre quelle più piccole (classe K e M [cite]http://goo.gl/ccspTg[/cite]) andarono a creare quello che oggi chiamiamo alone, una regione pressappoco sferica di stelle a bassa metallicità (Popolazione II e III) che circonda le galassie [cite]http://goo.gl/EnxEGT[/cite].
Nel giro di appena un miliardo di anni invece, le stelle più massicce del centro galattico  si sarebbero convertite in supernovae espellendo i loro metalli che avrebbero arricchito il mezzo interstellare esterno al nucleo. Le onde d’urto avrebbero poi innescato una seconda ondata di formazione stellare; stelle un po’ più piccole ma ricche di metalli che avrebbero poi potuto possedere anche dei pianeti rocciosi (Popolazione I). Di fatto, questo meccanismo implica che la GHZ migri nel tempo da posizioni relativamente più vicine al nucleo a porzioni sempre più esterne del disco man mano che la disponibilità di metalli aumenta verso la periferia galattica [cite]http://goo.gl/yMLtCS[/cite] 3.
Comunque, anche se è vero che un certo tenore di metallicità indica la presenza di elementi chimici complessi necessari alla formazione dei pianeti rocciosi, alcuni studi statistici sui pianeti extrasolari scoperti mostrano che esiste una pericolosa correlazione tra la presenza di grandi pianeti massicci in orbita stretta e l’alto tasso di metallicità riscontrato nella loro stella ospite [cite]http://goo.gl/Zg9L6A[/cite] [cite]http://goo.gl/Xmwa8O[/cite].  Questo curioso aspetto potrebbe escludere la presenza di pianeti più simili alla Terra che si trovano all’interno della loro CHZ e di fatto escludere dalla GHZ anche i pianeti in orbita a stelle con una metallicità elevata.
Pertanto già basandosi solo sull’indice di metallicità stellare si può abbozzare una prima stima dimensionale di una GHZ; un valore eccessivo potrebbe impedire la formazione di pianeti di taglia terrestre nella zona Goldilocks della stella ospite quanto una scarsa metallicità potrebbe impedirne proprio l’esistenza!

L’inabitabilità del nucleo galattico

Lo sconvolgente panorama del cielo visto su un pianeta immerso nel nucleo galattico.

Lo sconvolgente panorama del cielo visto su un pianeta immerso nel nucleo galattico.

Deve esserci una vista magnifica verso il Centro Galattico. Mille e mille stelle di ogni colore e taglia renderebbero un qualsiasi pianeta perennemente immerso in un perenne crepuscolo senza fine, intervallato da una fonte di luce più accecante proveniente dalla sua stella. Peccato che un pianeta simile possa essere tanto ostile alla vita umana e, probabilmente, ad ogni altra.
Sulla Terra il campo geomagnetico contro i raggi cosmici prima, e l’efficace scudo di ozono contro i raggi ultravioletti poi, hanno permesso alle primitive forme di vita acquatiche di  ergersi sulla terraferma.

\(O_3 +X \rightarrow XO + \ O_2 \ (dove \ X \ sta \ per \ O, \ NO, \ OH, \ Br \ e \ Cl) \)

L’ozono è una molecola triatomica dell’ossigeno altamente instabile perché cede facilmente il suo terzo atomo ad altri atomi come azoto, idrogeno, bromo e cloro. Alcuni di questi elementi sono già presenti nella stratosfera (azoto,ossigeno e idrogeno) o rilasciati dai vulcani, dal vapore acqueo e dagli oceani. La fotodissociazione indotta dalle radiazioni nell’alta atmosferica  scinde le molecole dei gas in singoli atomi molte volte più reattivi

  • N 2 -> 2N
  • O 2 -> 2O
  • CO 2 -> C + 2O
  • H 2 O -> 2H + O
  • 2NH 3 -> 3H 2 + N 2

finendo per  produrre:

  • NO 2 (consuma fino a 400 molecole di ozono)
  • CH 2
  • CH 4
  • CO 2

Ma un pianeta immerso nel nucleo galattico subirebbe un bombardamento di raggi cosmici che neanche l’azione combinata dell’eliosfera della sua stella e del campo magnetico planetario potrebbero fermare. Un tasso di radiazione appena 100 volte superiore a quello che mediamente investe la Terra [1.  Il flusso di raggi cosmici che normalmente investe la Terra è di \(9 \times 10^4 \ ergs \cdot cm^{-2} \cdot yr^{-1}\).] è sufficiente affinché la produzione naturale di monossido di azoto nella troposfera impedisca la formazione di uno strato di ozono stabile.
Il monossido di azoto quindi reagisce con altri atomi di ossigeno liberi trasformandosi nel micidiale diossido di azoto, un micidiale gas rossastro che tende a depositarsi al suolo. Qui il diossido di azoto è libero di convertirsi in acido nitrico e altri nitrati rendendo inospitali alla vita sia la superficie solida del pianeta che gli eventuali oceani [cite]http://goo.gl/3uHfS8[/cite].
Un flusso altrettanto simile di radiazioni può essere provocato dalle esplosioni di supernova di tipo II [cite]http://goo.gl/Fuu07j[/cite] entro un raggio di 10 pc dal pianeta [cite]http://goo.gl/1yGBu8[/cite], che presso i nuclei galattici sono statisticamente superiori che nel resto della galassia. Per questo nello stabilire una GHZ coerente occorre tener conto del rischio che eventuali esplosioni di supernova e RGB possano sterilizzare un pianeta che giace entro un raggio ben più grande del nucleo galattico.

Finora non sappiamo se la vita ha origine da materiali e reazioni chimiche che avvengono sul pianeta o sono frutto di una sequenza molto più antica che inizia già nello spazio interstellare (molte recenti scoperte spingono verso questa seconda ipotesi [cite]http://goo.gl/paIV6U[/cite]). Ma le stesse radiazioni ionizzanti che possono sterilizzare un pianeta possono benissimo distruggere i composti organici nelle comete e non solo.
Studiando le orbite dei resti della formazione stellare 4 (che per il Sole chiamiamo Nube di Oort) appare subito evidente che tanto più un sistema planetario si avvicina al nucleo galattico tanto più il pozzo gravitazionale di questo influenza e distorce le orbite dei resti cometari fino a disperderli o a farli precipitare verso il sistema planetario interno [cite]http://goo.gl/a4OajM[/cite]. Anche in questo caso i pianeti interni sarebbero continuamente sterilizzati dall’incessante bombardamento cometario a cui sono costretti.

Conclusioni

Naturalmente il concetto di GHZ fin qui espresso non è da considerarsi assoluto; possono esserci altre condizioni astrofisiche che qui non sono state prese in considerazione in grado di espandere o contrarre la zona galattica abitabile. Magari altre forme di vita potrebbero essere abbastanza tenaci da svilupparsi e prosperare anche in ambienti a noi ostili o comunque dove non ce lo aspetteremmo. Poi anche qui, nella periferia galattica esistono piccole stelle con un basso tenore di metalli e magari senza pianeti interessanti accanto a supergiganti capaci un giorno di sterilizzare altri mondi nel raggio di diversi parsec. Detta così quindi la GHZ può essere molto più frastagliata e meno definita della più nota Circumstellar Habitable Zone ma non per questo è meno intessante studiarla.

 

Buon anniversario SDO

Solar Dynamics Observatory 
This video is public domain and can be downloaded at: http://svs.gsfc.nasa.gov/goto?11742
 

Pages_from_417176main_SDO_Guide_CMRSono passati cinque anni e l’osservatorio orbitale Solar Dynamics Observatory (SDO) non ha mai smesso un momento di stupirci con le sue immagini della cromosfera e della superficie del Sole. Da alcuni considerato il successore dell’ancora funzionante Solar and Heliospheric Observatory (SOHO), in realtà sono due osservatori che si completano fornendo un quadro senza precedenti del Sole e della sua attività. Per questo basta vedere gli strumenti di bordo dei due osservatori spaziali disponibili sui due siti ufficiali per rendersene conto.
Con le sue riprese nell’ultravioletto estremo accoppiate con i dati dell’attività magnetica solare SDO ha aiutato gli astrofisici a comprendere meglio i meccanismi che sono alla base di molti fenomeni solari come ad esempio le espulsioni di massa coronale (CME),  i buchi coronali, l’evoluzione dell’attività del Sole tra i periodi di minimo e massimo del suo ciclo undecennale.
Agli occhi di un profano potrebbe sembrare assurdo spendere soldi per uno studio così approfondito e continuo del Sole; dopotutto è lì da diversi miliardi di anni e continuerà ad esserci ancora per qualche altro miliardo, quando dell’umanità non esisterà più neanche il ricordo. Invece, osservare una CME per tempo e arrivare a comprenderne i meccanismi di innesco è di enorme importanza per la nostra civiltà. Una CME che investe il nostro pianeta può mettere fuori uso i satelliti di comunicazione e di navigazione, disturbare gli strumenti degli aerei di linea fino a provocare blackout elettrici su aree più o meno vaste della Terra.
È giusto quindi studiare e tenere sott’occhio i capricci della nostra stella da cui, ricordiamoci sempre, dipende la nostra esistenza.

Come ti calcolo le proprietà di un esopianeta, le altre proprietà

 Finisce qui il lungo capitolo “Come ti calcolo le proprietà di un esopianeta“. Mi sono divertito un sacco a scriverlo come spero voi vi siate divertiti a leggerlo. È stato un argomento abbastanza impegnativo da trattare, dimostrare come un tenue affievolimento delle luce di una stella può sussurrare molte cose all’orecchio, o meglio all’occhio, di chi sa ascoltare e leggere il grande libro del cosmo. I metodi, le formule e i calcoli  da me illustrati non sono e non pretendono di essere esaustivi e precisi, ma vogliono essere semplicemente di stimolo alla curiosità del lettore. In fondo questo è lo scopo di questo Blog.

[latexpage]

exoplanetaUna volta scoperte le principali proprietà fisiche di un esopianeta, ossia raggio del pianeta, orbita, massa e temperatura di equilibrio, è possibile, in linea teorica risalire alle altre, come densità (questa è facile) struttura interna e in linea di massima pure la struttura dell’atmosfera, ovvero quali gas possono comporla dal punto di vista teorico.
Ovviamente non sarà mai possibile ottenere un quadro attendibile per questi ultimi due punti partendo dalla semplice osservazione dei transiti orbitali e basta, ma perlomeno così si ha un’indicazione su come proseguire nella ricerca.

Nel primo articolo [cite]http://ilpoliedrico.com/2014/07/come-ti-calcolo-le-proprieta-di-un-esopianeta-prima-parte.html[/cite] fu dimostrato come attorno ad una stella K7 orbitasse un pianeta grande quasi il doppio di Nettuno (42 000 km) a soli 44,6 milioni di chilometri dalla stella. e una temperatura di equilibrio di 263 °K.
La massa, finora indeterminata per via del metodo di rilevamento, viene infine stimata intorno alle 9,5 x 1026 kg,circa 159 volte la Terra.

La densità

Il calcolo della densità non è poi così difficile. Basta dividere la massa per il volume, ovvero:
\begin{equation}\label{eq:Densità}
\delta_{p}=\frac{m_{p}}{\frac{4\pi {r_{p}}^3}{3}}
\end{equation}

\[\rightarrow\]
\begin{equation}
\frac{9,5\times 10^{26}\; kg}{3,1 \times 10^{23} \; m^{3}}=3,06 \times 10^{3}\;
kg/m^{3}\end{equation}

La velocità di fuga e la gravità superficiale

Anche se è nota al grande pubblico soprattutto per la sua importanza nella balistica e nella missilistica, in realtà essa domina la struttura e la composizione delle atmosfere planetarie assieme al parametro della temperatura di equilibrio [cite]http://ilpoliedrico.com/2013/05/lo-spessore-delle-atmosfere-planetarie.html[/cite]. La velocità di fuga si ha quando l’energia cinetica del corpo e il modulo della sua energia potenziale gravitazionale si equivalgono, e questo vale per un missile, un sasso, un atomo e un fotone, nel caso di un buco nero. Per un qualsiasi corpo, pianeta o stella che sia non è difficile da stabilire, basta conoscere la sua massa e il raggio.

\begin{equation}\label{eq:Velocità di fuga}
v_{f}=\sqrt{\frac{2GM}{R}}
\end{equation}

\[\rightarrow\]
\begin{equation}
\sqrt{\frac{2 \cdot 9,5\times 10^{26}\; kg \cdot \left ( 6,67 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}\right ) }{4,2\times10^7 \;m}}= 54,930\; km/s
\end{equation}
Lo stesso discorso vale anche per la gravità superficiale:
\begin{equation}\label{eq:Gravità superficiale}
g_{s}=G \frac{M}{R^2}
\end{equation}
\[\rightarrow\]
\begin{equation}
\left ( 6,67 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}\right ) \cdot \frac{9,5\times 10^{26}\; kg}{\left ( 4,2\times10^7 \;m\right )^2} = 35,921 \; m/s^2
\end{equation}

Così si scopre che questo ipotetico esopianeta ha una densità simile alla Luna ma con una velocità di fuga che  è di poco inferiore a quella di Giove mentre la gravità alla superficie è una volta e mezza quella del ben noto gigante gassoso. Probabilmente è un grande mondo di silicati e un nucleo ferroso avvolto da una densa atmosfera. Quasi altrettanto certamente non è un buon posto per cercarvi forme di vita di tipo terrestre.

A caccia di mostri: nascita delle galassie più massicce dell’Universo.

La settimana scorsa, giovedì 21 agosto 2014, il Prof. Danilo Marchesini della Tuft University di Boston (potete vedere la cartina qui in basso) è stato ospite presso l’Università di Siena per una conferenza come dal titolo.  Non perdo tempo e vi lascio subito a questa visione.
Ringrazio l’Università di Siena e la persona di Alessandro Marchini per aver reso pubblico  il video dell’incontro.

[video_lightbox_youtube video_id=”dv-j6E-p-hE” width=”640″ height=”480″ auto_thumb=”1″]
astronomy_pod

Come ti calcolo le proprietà di un esopianeta, la massa (metodo radiale)

 

metodo dopplerI metodi per l’individuazione degli esopianeti sono sostanzialmente due: il metodo dei transiti, cioè quello analizzato fin qui nelle scorse puntate e usato dal celebre telescopio spaziale Kepler, e il metodo delle velocità radiali, che consiste nell’individuare lievi spostamenti doppler periodici nelle linee spettrali di una stella provocati dalla presenza di uno o più pianeti in orbita.
I vantaggi di questo metodo sono che attraverso il metodo delle velocità radiali è possibile avere una stima molto più precisa delle velocità orbitali, tant’è che è – per ora – l’unico metodo abbastanza affidabile che consente di ottenere una stima della massa di un esopianeta.
Come il precedente, anche questo approccio per trovare la massa di un pianeta extrasolare è legato alla legge fisica chiamata la conservazione della quantità di moto 1. La legge di conservazione del momento dice che in ogni sistema chiuso (cioè, un sistema in cui le forze esterne sono trascurabili), la quantità di moto totale di tutti gli oggetti del sistema non può cambiare. Pertanto, quando gli oggetti all’interno di un sistema chiuso interagiscono uno con l’altro, la quantità di moto di un singolo oggetto può anche cambiare, ma la quantità di moto totale di tutti gli oggetti all’interno del sistema deve rimanere costante.
Per questo si può scrivere legittimamente la relazione \(p_{\bigstar} = p_{p}\) 2,ovvero:
\begin{equation}
m_{\bigstar}v_{\bigstar}=m_{p}v_{p}
\end{equation}
Da qui ne consegue che si può scrivere anche:
\begin{equation}
m_{p}= \frac{m_{\bigstar}v_{\bigstar}}{v_{p}}
\end{equation}

La massa della stella si ottiene come al solito dalla relazione temperatura/luminosità ricavabile dal diagramma di Hertzsprung-Russell che consente di risalire alla massa della stella 3.
Purtroppo l’equazione qui sopra chiede la velocità orbitale del pianeta mentre attraverso la periodicità dello spostamento spettrale (V. figura in alto) restituisce il periodo orbitale del pianeta \(P_{p}\) attorno al centro di massa del sistema. Ma semplificando la Terza legge di Keplero per la Legge di Gravitazione di Newton si può scrivere che:
\begin{equation}
P_{p}^2=\frac{a_{p}^3}{M_{\bigstar}}
\end{equation}
dove appunto \(a_{p}\) è il semiasse maggiore dell’orbita del pianeta. Assumendo come nel caso scorso che sia un’orbita perfettamente circolare, si può dire anche che \(a_{p}\) è uguale al raggio dell’orbita, pertanto la circonferenza orbitale è pari a \(a_{p}\cdot 2\pi\), mentre la velocità orbitale non è altro che questa distanza diviso per il suo periodo \(P_{p}\):
\begin{equation}
v_{p}=\frac{2\pi a_{p}}{P_{p}}
\end{equation}
ecco la nostra velocità orbitale del pianeta e di conseguenza la sua massa!

equazione


Note: