L’indice ESI (Earth Similarity Index)

[latexpage]

Il metodo dei transiti, che è quello usato da Kepler è basato sulla lievissima variazione di luce di una stella dovuta al transito di un pianeta davanti a questa. Per un pianeta come la Terra, il transito davanti a una stella simile al Sole causa una variazione di luminosità pari a soltanto 84 parti per milione. Invece il transito di un pianeta come Giove provoca l'affievolimento della luce della stella di circa l'1-2%. La figura mostra in scala sia un transito di Giove attraverso l'immagine del nostro sole sulla sinistra e un transito terrestre sulla destra. L'effetto della Terra è paragonabile a quello di una pulce che passa sui fari di un'auto visto da diversi chilometri di distanza.Image credit: NASA

Il metodo dei transiti, che è quello usato da Kepler è basato sulla lievissima variazione di luce di una stella dovuta al transito di un pianeta davanti a questa. Per un pianeta come la Terra, il transito davanti a una stella simile al Sole causa una variazione di luminosità pari a soltanto 84 parti per milione. Invece il transito di un pianeta come Giove provoca l’affievolimento della luce della stella di circa l’1-2%. La figura mostra in scala sia un transito di Giove attraverso l’immagine del nostro sole sulla sinistra e un transito terrestre sulla destra. L’effetto della Terra è paragonabile a quello di una pulce che passa sui fari di un’auto visto da diversi chilometri di distanza.Image credit: NASA

Appena la tecnologia lo ha permesso, negli ultimi vent’anni abbiamo assistito alla scoperta di nuovi pianeti in orbita attorno ad altre stelle. I primi sistemi planetari rilevati erano anche quelli in cui gli effetti gravitazionali erano più evidenti, come i sistemi con i gioviani caldi o con pianeti in orbite caotiche e retrograde; tant’è che all’inizio si era addirittura supposto che i modelli di formazione planetaria sviluppati per spiegare il nostro Sistema Solare non fossero poi così universalmente validi.
Con l’affinarsi dei mezzi e della ricerca, ecco comparire sistemi planetari un po’ più ordinari e ordinati, simili al nostro. Magari più spesso questi appartengono a stelle un po’ più piccole del Sole – che comunque non è affatto un gigante, semplicemente perché l’influenza di un sistema planetario sulla sua stella è anche in questo caso più facilmente misurabile.
Sono principalmente due le tecniche che hanno permesso, dal 1995 ad oggi, di individuare il maggior numero di pianeti extrasolari: la tecnica delle velocità radiali e quella dei transiti. La tecnica delle velocità radiali misura la variazione della velocità della stella mente si muove attorno al baricentro del sistema stella-pianeta. Infatti, non è corretto dire che il pianeta orbita attorno alla stella: i pianeti orbitano attorno al baricentro comune  del sistema stella-pianeta, un punto che nel caso del sistema Sole-Terra si trova all’interno del Sole e molto vicino al suo centro. Non solo il pianeta orbita attorno al baricentro del sistema, ma anche la stella orbita attorno allo stesso punto. Poiché questo movimento è legato, tramite le leggi di Keplero, alla massa della stella e del pianeta, se si conosce la massa della stella si ricava anche la massa del pianeta.
C’è un problema però: se si osservasse il nostro Sistema Solare dall’esterno e si volesse vedere l’effetto della variazione della velocità radiale della Terra sul Sole si dovrebbe fare una misura della velocità radiale con una precisione di un centimetro al secondo, cosa che al momento non è ancora possibile fare con l’attuale strumentazione. Lo strumento HARPS-N, definito il cacciatore di pianeti extrasolare e montato al Telescopio Nazionale Galileo (TNG), permette di misurare la variazione della velocità radiale delle stelle con una precisone dell’ordine del metro al secondo. Quindi, di fatto pianeti come la Terra attorno a stelle di tipo solare alla distanza Terra-Sole non sono ancora in questo momento identificabili.

L’indice ESI non è universalmente accettato dalla comunità scientifica. Per i pianeti extrasolari confermati, la massa del pianeta indicata spesso ha solo un limite inferiore e non è poi comunque molto precisa. Poi per gli esopianeti indicati da Kepler spesso non c’è una stima della massa ma solo del raggio. D’altra parte, la maggior parte pianeti extrasolari confermati non hanno una stima del raggio. Inoltre, anche la temperatura teorica si basa su ipotesi che potrebbero essere sbagliate anche di centinaia di gradi centigradi. Per finire, nell’attuale formula, l’ESI attribuisce un esponente molto alto alla temperatura col risultato di deviare anche di molto l’indice rispetto al valore effettivo del dato. Questo significa che da uno a tre parametri utilizzati per calcolare l’indice ESI è frutto di supposizioni, calcoli e raffronti col Sistema Solare, senza alcuna evidenza osservativa diretta. Alla luce di queste considerazioni, l’utilità della ESI è certamente discutibile.

La tecnica dei transiti, quella che Kepler ha sfruttato fino al default dei sui giroscopi, è teoricamente una tecnica ancora più efficiente nel trovare pianeti. Però la probabilità di avere un pianeta come la Terra in transito davanti ad una stella come il Sole è dell’ordine dell’1 percento. Inoltre, la diminuzione della luminosità del Sole durante il transito della Terra è meno di 80 parti su un milione per un periodo di appena 8 ore in un anno: una quantità infinitamente piccola in un periodo smisurato di tempo. Questa sensibilità si può ottenere solo con i telescopi spaziali, quelli terrestri sono troppo limitati dalla turbolenza atmosferica.
A  giugno di quest’anno i pianeti extrasolari accertati erano 1795, suddivisi in  1114 sistemi planetari, di cui 461 sono sistemi multipli come il nostro (fonte exoplanets.eu).  Molti di questi sono stati individuati dal fortunato telescopio spaziale Kepler della NASA che ha studiato soltanto un piccolissimo fazzoletto di cielo compreso tra le costellazioni del Cigno e della Lira grande appena 12° quadrati. Una regione  abbastanza vicina al Piano Galattico da potersi ritenere, con le opportune cautele necessarie per un qualsiasi calcolo statistico, abbastanza significativa. È così che Kepler ha potuto studiare oltre 100 ooo stelle comprese tra 600 e 3 000 anni-luce di spazio, portando a supporre che la Galassia ospiti qualcosa come 60 miliardi di pianeti potenzialmente compatibili con la vita.
Come si sia giunti a questo numero è ancora oggetto di dibattito, ma in nocciolo è tutto nel numero delle nane rosse (classi K e M) presenti nella Via Lattea, stimato in almeno 75 miliardi. Anche supponendo che solo il 6 per cento di queste abbia un pianeta compreso nella Fascia Goldilocks si arriva a ben 4,5 miliardi di pianeti considerati biologicamente compatibili. Altri studi sulla sostenibilità planetaria [cite]http://arxiv.org/abs/1307.0515[/cite] fanno lievitare la stima fino a 60 miliardi.
Però dire che ci possono essere fino a 60 miliardi di mondi potenzialmente adatti alla vita e stabilire quali possono esserlo davvero è un altro discorso. Per risolvere questo problema viene in soccorso uno strumento matematico ideato dal Dott. Schulze-Makuch , professore alla School of Earth and Environmental Sciences dell’Università statale di Washington, l’Earth Similarity Index (ESI) – in italiano Indice di Somiglianza alla Terra – che esprime il grado di similitudine tra un qualsiasi pianeta extrasolare – può essere applicato anche ai grandi satelliti naturali  – e la Terra in un valore compreso tra zero (nessuna similarità) e uno (identico alla Terra) [cite]http://online.liebertpub.com/doi/abs/10.1089/ast.2010.0592[/cite]. I parametri dell’equazione vengono calcolati partendo da una o più variabili note, come il periodo orbitale e la distanza del pianeta dalla sua stella. Queste variabili sono ovviamente influenzate dal metodo di osservazione utilizzato, e anche le altre stime successive,  quando non sono conosciute, sono frutto di  calcoli ponderati. Ad esempio, la temperatura della superficie è influenzata da una infinità di altri fattori come l’irraggiamento, l’albedo, l’inclinazione assiale e l’effetto serra atmosferico; quando questa non è conosciuta a priori viene fatto riferimento alla temperatura di equilibrio di irraggiamento.
In sostanza l’ESI è una cifra, o figura, di merito; uno strumento matematico molto usato nell’industria e in ingegneria per indicare un parametro che ne racchiude molti altri. In questo caso però i parametri fondamentali di cui si tiene conto sono indicati nella tabella 1.

[table id=54 /]

Come vediamo questi parametri sono solo quattro. Si tratta di quattro parametri fisici facilmente ricavabili matematicamente dai dati orbitali della scoperta.

  • Raggio medio
    La scala delle dimensioni dei pianeti extrasolari è pressoché infinita; anche nel nostro Sistema Solare, la Terra è piccola rispetto a Giove e Saturno. Tuttavia alcuni studi suggeriscono che solo i pianeti che hanno un nucleo fluido in rotazione differenziale rispetto al mantello del pianeta possono avere un campo magnetico capace di proteggere la propria ecosfera dal vento stellare e dai raggi cosmici  [cite]http://arxiv.org/abs/1010.5133 [/cite]. Questi dati indicano che pianeti con un raggio superiore a due raggi terrestri possono avere difficoltà a mantenere liquido un loro  nucleo di ferro, mentre altri studi indicano che oltre 1,75 raggi terrestri debbano essere considerati sub-nettuniani i [cite]http://arxiv.org/abs/1311.0329 [/cite]
  • Densità
    Anche le densità che i pianeti extrasolari possono assumere è pressoché infinita. Per appartenere alla classe di Pianeta Roccioso simile alla Terra si considera generalmente una densità compresa tra 0,7 e 1,5 quella terrestre (4,4 -8,3 g/cm3). Questo perché una densità troppo bassa nelle dimensioni indicate, suggerite alla voce precedente, potrebbe indicare un corpo senza un nucleo metallico liquido e quindi senza un campo magnetico ben sviluppato. Questo vale anche per un pianeta troppo massiccio, il cui nucleo cristallizza per la pressione eccessiva  e si ferma.
  • Velocità di fuga
    La velocità di fuga è un parametro fondamentale per stabilire la presenza o meno di una atmosfera planetaria. Anche qui si ritiene che per un pianeta simile alla Terra la velocità di fuga debba poter trattenere gli atomi come l’azoto – e quindi anche il vapore acqueo, l’anidride carbonica e l’ossigeno,  a una temperatura di superficie media compresa tra 0 e 50° Celsius (273-323 K). Questo è un intervallo minimo, ma abbastanza ampio, in cui l’acqua si presenta allo stato liquido e può quindi esercitare il suo ruolo di solvente, funzione fondamentale per la vita.  mentre l’idrogeno, molto più leggero, è libero di disperdersi nello spazio. Pertanto la velocità di fuga di un pianeta compatibile con la vita di tipo terrestre può ritenersi compresa  tra 0,4 e 1,4 volte quelle della Terra (pari rispettivamente a sei volte la velocità di fuga dell’azoto atomico a  -18° C (255 K) e a sei volte quella dell’idrogeno atomico alla medesima temperatura).
  •  Temperatura superficiale
    Credit: Il Poliedrico

    Credit: Il Poliedrico

    La temperatura di equilibrio termico è la temperatura che possiederebbe un pianeta in assenza di una atmosfera e il cui unico fattore di regolazione è rappresentato dall’albedo ed è unicamente dettata della legge di Stefan-Boltzmann 1 e la Legge dell’Inverso del Quadrato. La temperatura di equilibrio della Terra è di soli -18°c che l’effetto serra atmosferico porta a + 15° C.

 

\[

ESI = \prod_{i=1}^n \left(1 – \left| \frac{x_i – x_{i_0}}{x_i + x_{i_0}} \right| \right)^\frac{w_i}{n}

\]

l’equazione dice come questi parametri devono essere utilizzati:

  • x i è il valore del i-esimo parametro planetario (ad esempio la temperatura superficiale)
  • x I0 è il valore del i-esimo parametro planetario di riferimento (la Terra)
  • w i è l’esponente di ponderazione assegnato al i ° parametro planetario (valore arbitrario che indica il valore relativo)
  • n è il numero di parametri planetari trattati

In questo modo vengono definiti tre diversi  indici ESI del pianeta in esame:

  • ESI Interno $\rightarrow ESI_I=(ESI_{r} \cdot ESI_{\rho})^{1/2}$
    Tiene conto del raggio del pianeta (peso dell’esponente = 0,57) e la sua densità (peso dell’esponente =  1,07). Questo indice indica il grado di somiglianza fisica dell’esopianeta alla Terra.
  • ESI Superficiale $\rightarrow ESI_S=(ESI_{ve} \cdot ESI_{Ts})^{1/2}$
    Questo è regolato dai parametri di temperatura della superficie (peso dell’esponente = 5,58) e dalla velocità di fuga (peso dell’esponente =  0,70).
    Questo esprime invece la somiglianza delle caratteristiche ambientali in riferimento alla Terra.
  • ESI Globale $\rightarrow ESI_G=(ESI_{I} \cdot ESI_{S})^{1/2}$
    È il computo basato su tutti i e quattro i parametri nella matrice di calcolo. Pertanto quantifica esattamente quanto un esopianeta sia nel suo complesso simile alla Terra o ‘Earth-like‘ per usare l’espressione anglofona più diffusa.

Riassumendo tutti i dati qui sopra elencati, si deduce che un pianeta per essere considerato simile alla Terra (e l’indice ESI quantifica proprio quanto questo si avvicini) deve essere tra 0,5 e 1,75 raggi terrestri (mantenendo nel caso più grande una densità intorno ai 4,5 g/cm3) e una massa compresa tra 0,1 e 4 volte quella della Terra. Un bel margine che lascia comunque sperare che prima o poi un pianeta davvero molto simile alla Terra si trovi.
Con molta probabilità nel corso dei prossimi vent’anni, grazie alla messa in orbita di nuovi telescopi – quali per esempio Gaia, Cheops e Plato –dotati di una strumentazione più precisa, sarà possibile trovare pianeti dimensionalmente simili alla Terra che orbitano attorno a stelle più simili Sole (classe G) a distanze paragonabili e con indici ESI molto prossimi a 1. E forse saremo anche in grado di rispondere alla domanda: la Terra è l’unico mondo che ospita la vita nell’Universo?


Note:

Alla ricerca dei giusti marcatori nei pianeti extrasolari

[latexpage]

Credit: Il Poliedrico

Credit: Il Poliedrico

L’esistenza di pianeti extrasolari è ormai accertata al di là di ogni ragionevole dubbio.
Strumenti come il satellite Kepler e la spettrometria doppler hanno mostrato che quasi ogni stella dalla classe G in giù [cite]http://ilpoliedrico.com/utility/classificazione-stellare[/cite] accoglie in sé un sistema planetario.
Anche se questa appare già come una grande scoperta dal punto di vista sia scientifico che filosofico, la domanda successiva è: quali di questi pianeti hanno le caratteristiche fisiche adatte per sostenere la vita?
Innanzitutto è necessario che la condizione primaria sia accertata, ovvero che il pianeta extrasolare  orbiti all’interno dell’ecosfera della sua stella (zona Goldilocks) e che quindi riceva la giusta quantità di energia per sostenere l’acqua liquida entro un arco abbastanza ampio di temperature. Questo significa che il pianeta non deve essere troppo piccolo, così da permettere la presenza di una atmosfera abbastanza stabile e densa da consentire la presenza costante di acqua liquida 1. A questo punto non c’è che da sperare di rilevare un pianeta che, avendo tutti i requisiti necessari, sia riuscito a sviluppare la Vita. Al di là del tentativo – per ora infruttuoso – di scovare segnali radio di altre civiltà extraterrestri, non resta che cercare altri segnali che indichino comunque la presenza di Vita. Prendendo l’unico esempio disponibile, cioè la Terra, le firme vitali più evidenti dallo spazio sono quelle d’acqua, dell’ossigeno gassoso nell’atmosfera e della clorofilla.

Confronto fra gli spettri della Terra e  di un gemello Terra convoluta per un dato spec- Risoluzione trale con una funzione di line-spread gaussiana. L'assorbimento di spicco O2  caratteristica a 0,76 micron diventa completamente mescolato con la vicina giochi d'acqua  per R    20, mentre la funzione O3 è ampio e poco profondo, e molto difficile da vedere.

Confronto fra lo spettro terrestre e quello previsto per un ipotetico pianeta gemello della Terra.  La riga di assorbimento dell’ossigeno biatomico (O2) a 0,76 micron viene quasi nascosta dal segnale dell’acqua finché la risoluzione spettrale è piuttosto bassa (R=20); mentre l’ozono (O3) rimane poco visibile a tutte le risoluzioni calcolate.

Timothy Brandt e David Spiegel dell’Institute for Advanced Study della Princeton University nel New Jersey. si sono posti questa domanda e hanno tentato di elaborare l’aspetto della firma biologica che la Vita potrebbe imprimere sullo spettro di un pianeta [cite]http://arxiv.org/abs/1404.5337[/cite].
Questo studio è necessario anche per poter ideare gli strumenti che poi saranno costruiti proprio per questo scopo. E infatti il loro studio ha dato risultati molto importanti.

La molecola di gran lunga più semplice da individuare è quella dell’acqua, anche se per i due ricercatori occorre ancora un potere di contrasto che solo un telescopio fuori dall’atmosfera può ottenere: $1$ su $10^{10}$.
Se il potere risolutivo 2 $R=20$ alle lunghezze d’onda inferiori a 760 nm (0,76 $\mu m$) è  già disponibile con la tecnologia attuale, una risoluzione maggiore (diciamo 700/5 $nm$) necessaria per distinguere correttamente il segnale dell’ossigeno molecolare è ancora al di là del limite strumentale attuale, anche se sicuramente verrà presto raggiunto dalle prossime generazioni di spettrografi. Frequenze assorbimento piante
Molto più difficile invece sarà rintracciare una qualche forma di clorofilla.
I ricercatori indicano una regione intorno a 700 $nm$ chiamata vegetation red edge (SRE), come indicatore importante della presenza di vegetazione. Osservando l’immagine qui a sinistra è evidente che (sulla Terra) tutta l’attività fotosintetica si interrompe bruscamente alla fine dello spettro visibile perché il livello di energia dei fotoni alle lunghezze d’onda più lunghe di circa 700 $nm$ non è più sufficiente per sintetizzare le molecole organiche 3. Qui la vegetazione diventa quasi trasparente nel vicino infrarosso. Questo repentino cambiamento della riflettività può essere stimato tra il 5% e il 50%  tra i 680 e i 730 $nm$.
Anche questo fenomeno, peraltro non riproducibile da nessun altro fenomeno fisico naturale, potrebbe essere un altro interessante indicatore per capire se una qualche forma di vita che faccia ricorso alla fotosintesi sia presente su un esopianeta [cite]http://arxiv.org/abs/astro-ph/0503302[/cite].

Se prendiamo le tre forme principali della clorofilla (clorofilla A e B, β carotene 4) vediamo che la capacità di assorbire la luce dove anche c’è il picco massimo di assorbimento, intorno ai 400 – 500 $nm$ 5, mentre solo una minuscola parte dello spettro rosso viene coinvolta nel ciclo della fotosintesi.  Nelle piante superiori i pigmenti sono per la maggior parte clorofilla del tipo A e del tipo B.
Le clorofille assorbono la luce rossa e blu e trasmettono e riflettono quella verde, da questo dipende la colorazione della maggior parte delle piante.
Le altre due che ho menzionato nell’immagine, la ficoeritrina 6 e la ficocianina 7 sono solo, come ho spiegato  nelle note, dei pigmenti accessori della Clorofilla A.
Questo fa sì che il meccanismo della fotosintesi, almeno sulla Terra, sia estremamente efficiente nell’intercettare e sfruttare ogni singolo joule di energia luminosa emesso dal Sole nello spettro visibile. Però non sappiamo se un meccanismo simile sia presente e come possa essere strutturato su un altro pianeta, ma è possibile – in linea di massima – immaginarlo.

spettro.coloreLa radiazione emessa da una stella (nel nostro caso il Sole) emette una radiazione approssimata di corpo nero il cui picco è centrato sulla banda visibile dello spettro elettromagnetico. Quindi c’è da aspettarsi che, piuttosto ragionevolmente, questo sia vero anche per le altre stelle.
E siccome il picco di corpo nero varia in funzione della temperatura superficiale della stella, è naturale pensare che su pianeti di altre stelle se mai si fosse sviluppata come la fotosintesi 8 [cite]http://pubs.rsc.org/en/content/articlelanding/2011/nj/c0nj00652a/[/cite], tale processo si sarà ottimizzato proprio per recepire il picco massimo della radiazione incidente alla superficie del pianeta 9  [cite]http://arxiv.org/abs/astro-ph/0701391[/cite].

A questo punto appare evidente che la ricerca di altre forme di vita su altri pianeti  non è così poi al di fuori della portata , anche strumentale, di quanto si possa credere. Anche le speculazioni, perfino sulle forme di certi processi biologici, su cosa cercare certo non mancano. Magari mi lascia perplesso l’impronta dell’ossigeno, ma questo sarà un tema che verrà affrontato prossimamente.


Note:

Un altro caso marziano: Yamato 000.593

Yamato 000593

Questa è una serie di immagini riprese al microscopio elettronico a scansione di una sezione sottile lucida di Yamato 000.593. Il iddingsite presente in questo meteorite è un minerale argilloso (vedi nota articolo). Qui sono evidenti anche dei microtuboli 
La barra di scala in basso a sinistra è di 2 micron.
Credit: NASA

Dopo il pluridecennale caso di ALH84001 1, adesso a tenere banco nella comunità scientifica è un altro meteorite marziano, conosciuto come Yamato 000.593. Il meteorite, che pesa 13,7 chilogrammi, è una acondrite trovata durante la spedizione giapponese Antarctic Research Expedition del 2000 presso il ghiacciaio antartico Yamato. Le analisi mostrano che la roccia si è formata circa 1,3 miliardi di anni fa da un flusso di lava su Marte. Circa 12 milioni di anni fa un violento impatto meteorico ha scagliato dei detriti dalla superficie di Marte fin nello spazio e, dopo un viaggio  quasi altrettanto lungo, uno di questi è caduto in Antartide circa 50.000 anni fa. Adesso, gli stessi autori che nel 1996 annunciarono la scoperta di tracce di batteri alieni all’interno di ALH840001 [cite]http://www.sciencemag.org/content/273/5277/924[/cite], si sono concentrati sullo studio del meteorite Yamato [cite]http://online.liebertpub.com/doi/abs/10.1089/ast.2011.0733[/cite] scoprendo così la presenza di un tipo di argilla chiamata iddingsite 2 che si forma in presenza di acqua liquida [cite]http://www.researchgate.net/publication/234234597_Yamato_nahklites_Petrography_and_mineralogy[/cite].

caratteristiche incorporate in uno strato di iddingsite.  Sedi di EDS spettri delle sferule  e lo sfondo è dato dal rosso e  cerchi blu, rispettivamente. (B) EDS spettri  di sferule (rossi) e lo sfondo (blu).  Le sferule sono arricchiti * 2 volte in  carbonio rispetto allo sfondo. (C)  Vista SEM delle caratteristiche spherulitic incassato  sia in un superiore (arancione falsi colori)  e strato inferiore di iddingsite. Credit: NASA

(A) Le nanostrutture ricche di carbonio incorporate in uno strato di iddingsite.
(B) Gli spettri delle sferule e lo sfondo sono evidenziati dai cerchi rosso e blu Le sferule mostrano il doppio di carbonio rispetto allo sfondo.
(C) Le sferule appaiono incassate tra due diversi strati di iddingsite: qui il superiore (in falsi colori) e uno inferiore.
Credit: NASA

Dai margini di queste vene di iddingsite partono delle strutture filamentose che contengono aree ricche di carbonio non dissimili al cherogene 3. La presenza di materiale organico complesso come il cherogene in una meteorite marziana non deve trarre in inganno: la sua presenza è stata registrata anche all’interno di molte altre meteoriti: le condriti carbonacee di solito ne sono abbastanza ricche [cite]https://www.jstage.jst.go.jp/article/jmps/100/6/100_6_260/_article[/cite]. Occorre anche ricordare che l’origine dei cherogeni non è necessariamente di origine biologica, visto che è presente anche nelle polveri interstellari [cite]http://www.aanda.org/articles/aa/abs/2001/41/aah2968/aah2968.html[/cite].

Un’altra caratteristica del meteorite Yamato sono le sferule particolarmente ricche di carbonio, circa il doppio rispetto all’area circostante, situate tra due diversi strati di minerale argilloso che le separa dai carbonati e i silicati circostanti. Solo un altro meteorite marziano , il Nakhla 4 presenta strutture simili 5.

La presenza di acqua liquida su Marte in un intervallo di tempo compreso tra 1,3 miliardi e 650 milioni di anni fa è stata confermata anche da altre meteoriti [cite]http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2000.tb01978.x/abstract[/cite] e da diversi studi effettuati con sonde automatiche, ma essa da sola non è sufficiente per confermare – o confutare – una antica presenza di vita marziana.
Oltre all’acqua occorrono una fonte di energia e i materiali necessari per il suo sviluppo, ma sopratttutto occorre che siano presenti opportune condizioni ambientali [cite]http://www.researchgate.net/publication/258613544_Technologies_for_the_Discovery_and_Characterization_of_Subsurface_Habitable_Environments_on_Mars[/cite] che – attualmente – Marte non ha.
Anche se la contemporanea presenza di materiali organici complessi come i cherogeni e l’acqua liquida sulla superficie del Pianeta Rosso suggeriscono che lì in passato vi siano stati alcuni fattori ambientali necessari a sostenere la vita, e nonostante alcune somiglianze strutturali di alcuni campioni provenienti da Marte con materiali terrestri, questo comunque non prova che la vita su Marte sia mai realmente esistita. Solo uno studio di laboratorio su campioni di suolo marziano può darci la risposta definitiva.
Per ora è meglio essere cauti.


Note:

L’eterno dibattito insoluto: l’origine della Vita sulla Terra

Solo poche ore fa in un convegno scientifico di geofisica svoltosi a Firenze è stata presentata l’ipotesi che la vita sulla Terra abbia avuto piuttosto origine su Marte. Molti altri blog hanno ripreso la notizia come oro colato, ma non credo che sia così.

Cristalli di diossido di molibdeno (MoO2, in violetto).

Cristalli di diossido di molibdeno (MoO2, in violetto).

L’interscambio di materiale tra i pianeti del Sistema Solare in sé è, almeno in un senso, ampiamente provato, come i resti di antichi frammenti marziani rinvenuti sulla Terra mostrano 1 .
La teoria ora proposta a Firenze da Steven Benner 2 alla conferenza di geochimica Goldschmidt vuole che le condizioni passate su Marte siano state molto più favorevoli alla vita che sulla Terra, e che da lì, una volta sviluppata, la Vita – o più probabilmente i suoi precursori – sia finita sulla Terra attraverso il medesimo meccanismo meteorico.
La teoria di Benner parte dall’ipotesi che la Vita quale la conosciamo abbia avuto origine da molecole di RNA 3 e che alcuni metalli, il molibdeno 4 5  e il boro, abbiano avuto un ruolo determinante nella stabilizzazione delle prime molecole organiche nella sua forma altamente ossidata.
Diversi esperimenti mostrano infatti che il molibdeno e il boro, in forma di composti altamente ossidati, sono dei catalizzatori cruciali per la formazione delle molecole di RNA [cite source=’pubmed’]11906160[/cite] [cite source=’pubmed’]21221809[/cite]. Ad esempio, i catalizzatori a base di boro aiutano a stabilizzare le molecole di zucchero composte da cinque atomi di carbonio mentre i catalizzatori a base di molibdeno riorganizzano questi zuccheri in ribosio. Inoltre, l’abbondanza di acqua nella Terra primordiale avrebbe impedito la formazione delle molecole di RNA 6  e  la sostanziale assenza di ossigeno atmosferico avrebbe impedito la stabilizzazione del boro in borati  7  e dei catalizzatori di molibdeno.

Il meteorite MIL09000 ritrovato in Antartide nel 2010. Si ritiene che abbia circa 700 milioni di anni.  Credit: Johnson Space Center /NASA

Il meteorite MIL09000 ritrovato in Antartide nel 2010. Si ritiene che abbia circa 700 milioni di anni.
Credit: Johnson Space Center /NASA

A sostegno delle idee di Benner sono la scoperta di argille ricche di boro in un meteorite marziano, MIL 090030 [cite]10.1371/journal.pone.0064624[/cite] [cite]10.1111/j.1945-5100.2012.01420.x[/cite] e la straordinaria scoperta della ricca presenza di ossigeno nel mantello marziano almeno 3,7 miliardi di anni fa [cite]10.1038/nature12225[/cite].

Un ambiente ricco di ossigeno (il mantello marziano), il boro (nelle argille marziane)  e il molibdeno sono essenziali – secondo Benner – per la nascita e lo sviluppo di molecole di RNA, precursori di ogni altra forma di vita, e il primitivo Marte molto probabilmente lo era.

Per contro – e pare assurdo – le condizioni ambientali terrestri di quando si presume si siano formate le prime forme di vita 2-3,5 miliardi di anni fa, sono molto scarse a causa della dinamicità geologica del pianeta e resti più antichi di 3,8-4 miliardi di anni sono molto difficili da trovare e studiare 8. Per questo non sappiamo esattamente quali siano state le condizioni chimico-fisiche presenti sulla Terra alla fine dell’Adeano [cite]10.1038/nature10655[/cite] [cite]10.1038/nature11679[/cite] e se la Terra era umida quanto oggi o se, più probabilmente, molta acqua e ossigeno erano ancora intrappolati nel mantello superiore. 4 miliardi di anni fa il Sole era un po’ più debole di oggi e solo un massiccio effetto serra prodotto da una atmosfera satura di anidride carbonica e vapore acqueo scaldava il pianeta. Magari le condizioni auspicate per l’ipotesi marziana (molibdeno, boro e ossigeno) erano comunque presenti nel sottosuolo terrestre che offriva condizioni fisiche (temperatura, pressione etc.) piuttosto stabili e al riparo dalla radiazione ultravioletta del Sole che, in assenza di una barriera di ozono, sterilizzava la superficie del pianeta.

Finora le prove di Benner confermano che sul Pianeta Rosso sono esistite in un lontanissimo passato  le condizioni favorevoli allo sviluppo della Vita secondo la teoria del Mondo a RNA. Ma ci sono altre teorie, che mi riservo di spiegare più a fondo in seguito, che in assenza di prove contrarie meritano di essere altrettanto prese in considerazione. In attesa, o in assenza, di prove più concrete sull’origine marziana della Vita terrestre o dei suoi precursori, credo che sia opportuno continuare ad indagare e a supporre – per il momento – che la Vita sulla Terra sia autoctona 9.
Quindi perché scomodare il vulcanismo marziano o un impatto meteorico su Marte che ha scagliato RNA marziano qui dopo un viaggio di un paio di milioni di anni? Per me significa solo spostare lo storico dilemma.


Note: