
L’ammasso di galassie nella Chioma di Berenice (Abell 1656) – Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA). Acknowledgment: D. Carter (Liverpool John Moores University) and the Coma HST ACS Treasury Team.
Nel 1933 l’astrofisico svizzero Fritz Zwicky, del California Institute of Technology, applicò un metodo di indagine chiamato teorema del viriale all’ammasso di galassie della Chioma e ottenne le prime prove dell’esistenza di una importante discrepanza tra la materia visibile e la massa misurata dell’ammasso.
Zwicky stimò che la massa totale dell’ammasso basata sui moti delle galassie vicino al suo bordo rispetto ad una stima in base al numero delle galassie totale dell’insieme era circa 400 volte più alta.
La gravità stimata delle galassie visibili nel ammasso sarebbe stata troppo piccola per giustificare la velocità di queste e quando ulteriori osservazioni confermarono in seguito i risultati di Zwicky, per i cosmologi si pose seriamente il “problema della massa mancante”.
Infatti a questo punto se si voleva mantenere intatto Il concetto dell’inverso del quadrato della distanza ( 1/R2 dove R è la distanza) che è la base della teoria della gravitazione, nasceva un bel problema scientifico: come giustificare questa differenza? Cos’è questa materia che ha una importante influenza gravitazionale ma che è di fatto invisibile alle analisi ottiche/elettromagnetiche?

La galassia UGC 7321, un ottimo esempio di galassia circondata da un alone di materia invisibile.
Rielaborazione immagine:
Il Poliedrico
Il Modello Cosmologico Standard suggerisce che tutto l’Universo è composto per il 4,9% da materia barionica – neutroni, protoni, elettroni (anche se questi non sono proprio barioni) – ordinaria, il 26,8% da una forma di materia totalmente sconosciuta che però produce effetti gravitazionali e per il 68,3% da energia oscura l2 l3.
Ma se spiegare quel 26,8% di materia oscura è già un grosso problema, figuriamoci spiegare che almeno la metà della massa barionica richiesta dal Modello Cosmologico Standard non si trova!
Certo questo è un bel rompicapo nel rompicapo, è come dover comporre un puzzle con tessere che sono a loro volta altri puzzle da comporre.
Oggetti di natura barionica fredda che non emettono luce possono essere pianeti, nane brune o anche dei semplici granelli di polvere, ma mentre una nube interstellare copre vaste regioni di spazio, un corpo massiccio di dimensioni megametriche 1 intercetterà di certo meno luce di una nube grande svariati anni luce. Obbiettivamente però è difficile che una massa significativamente importante 2 sia dispersa in miliardi di corpi massicci troppo piccoli per emettere o assorbire luce in maniera apprezzabile.
Questi oggetti massicci sono chiamati MACHO (MAssive Compact Halo Object) ma secondo le stime migliori possono rappresentare appena il 20% della massa totale di una galassia 3, certo rappresentano una parte importante della massa di una galassia, ma comunque sono sempre un po’ troppo pochi per giustificare la parte non rilevata di massa barionica.

Questa è una simulazione computerizzata dell’aspetto di circa 2 miliardi di anni di spazio che mette in evidenza lo WHIM.
Credit: Matthew Hall, NCSA.
Alcuni studi recenti inoltre mostrano che le singole galassie sono al centro di gigantesche bolle di gas ionizzato 4 di massa paragonabile alla galassia ospite. Data la rarefazione estrema, questo gas è ionizzato a temperature comprese tra i centomila e un milione di kelvin, quindi è quasi impossibile da vedere, visto che a quelle temperature le righe spettrali degli atomi dominano nei Raggi X.
Probabilmente la sua origine è legata ai venti stellari della galassia e modellato almeno in parte dal campo magnetico globale di questa.
Questo è lo WHIM (Warm-Hot Intergalactic Medium), ovvero mezzo intergalattico caldo, di cui le bolle galattiche sono solo una parte, che si estende tra le galassie dando all’Universo l’aspetto di ragnatela tridimensionale.
Forse è presto per dirlo, ma con i MACHO e lo WHIM almeno la tessera del puzzle che rappresenta la massa barionica mancante pare sia ricomposta e che in fondo questa sia stata ritrovata.
Adesso resta che capire cosa sia l’altro 84,5% della massa dell’Universo che chiamiamo Materia Oscura e che ancora sfugge alla nostra comprensione.
Sotto a chi tocca.