Neutrini nel Modello Standard

SAPORI_NEUTRINOVi ricordate i neutrini e le loro controparti anti?
Sicuramente sì, non fosse peraltro per la figura cacina del famoso “tunnel Gelmini” su cui non mi dilungherò oltre per non infierire.
Comunque sappiate che ogni secondo il nostro corpo è attraversato da almeno 50 mila miliardi di neutrini provenienti per la maggior parte dal Sole, ma anche dalle centrali atomiche presenti sul nostro pianeta, da quelli prodotti dal decadimento beta delle rocce terrestri, etc. Addirittura anche noi curiosamente produciamo i nostri neutrini, dal decadimento naturale del potassio 40 presente nei nostri corpi.
I neutrini sono ovunque nell’Universo ma non avendo quasi massa  e nessuna carica elettrica questi interagiscono pochissimo con la materia ordinaria: un muro  di piombo spesso un anno luce riuscirebbe a fermare solo la metà dei neutrini che lo attraversano.

[table “28” not found /]
Qui si parla di “autostati di sapore del neutrino”, in analogia on i “sapori” dei quark; questi ultimi, però, oltre ad essere in numero doppio (6 invece di 3), identificano gli autostati di massa e non quelli dell’interazione debole di corrente carica.

Scoperto solo nel 1956, ma teorizzato da Wolfgang Pauli nel 1930 per spiegare il decadimento beta e battezzato nel 1934 da Enrico Fermi, nel 1962 si è capito che non esiste una sola natura del neutrino, ma che esso è uno e trino, cioè capace di trasformarsi nel tempo da un tipo all’altro, come potete vedere dal disegno qui sopra e dalla tabella qui accanto.
I fisici chiamano la capacità del neutrino di mutare da un tipo all’altro oscillazione dicendo che il neutrino ha cambiato sapore 1.
E proprio questa capacità del neutrino di oscillare fra i tre diversi stati indica come il Modello Standard 2 sia così accurato.

Cercare i neutrini da studiare non è difficile.
Si possono prendere i neutrini solari, che sono prodotti dalle reazioni di  fusione termonucleare nel nucleo del Sole – catena Protone-Protone – di sapore elettronico, oppure quelli prodotti dai raggi cosmici che collidono con gli atomi della nostra atmosfera che possono essere dei tre diversi sapori, oppure si possono produrre sparando protoni adeguatamente accelerati contro un bersaglio di grafite, così si ha anche il più completo controllo del fascio uscente piuttosto che aspettare che Madre Natura ci dia il neutrino giusto, al posto giusto, al momento giusto e nella direzione che si vuole.

Quindi per ottenere dei neutrini non c’è che l’imbarazzo della scelta. Il problema è semmai riuscire a vederli.
Una particella così piccola da quasi non avere massa, che si muove quasi alla velocità della luce 3 e che non ha carica elettrica, riuscire a vederla direttamente è impossibile, ma se ne possono vedere gli effetti indiretti mentre occasionalmente un neutrino interagisce con un atomo di un mezzo che funge da rilevatore. Questi effetti possono essere un flusso di particelle cariche oppure lampi di luce Cherenkov, o anche trasmutazioni chimiche, come accadeva ad esempio nei primi rivelatori al cloro-argon secondo una felice intuizione di Bruno Pontecorvo 4.
Pertanto se – per ora – pare impossibile catturare un neutrino, è possibilissimo invece vedere e misurare gli effetti del suo passaggio. Tutto sommato basta aguzzare l’ingegno!

(continua)


Note: