Risultati della ricerca per: goldilocks

L’ampiezza di una zona Goldilocks

Questo articolo nasce in seno alla preparazione del materiale di studio per lo stage per i finalisti delle Olimpiadi di Astronomia 2016 presso l’INAF-Osservatorio Astrofisico di Asiago due lezioni, tra le tante, dedicate interamente ai pianeti extrasolari. Sabrina Masiero e il sottoscritto hanno studiato e rivisto i calcoli, più volte, perciò fidatevi!

goldilocksOgni volta che sentiamo parlare della scoperta di qualche nuovo pianeta in orbita attorno a qualche stella, viene spontaneo chiederci se esso può ospitare una qualche forma di vita. La vita come la conosciamo ha bisogno di acqua allo stato liquido per poter esistere, e poter stabilire i limiti dove questo è possibile è di notevole importanza. Questa zona è chiamata Goldilocks o Riccioli d’Oro 1 perché ricorda la bambina della favola, Goldilocks appunto, quando deve scegliere tra le tre ciotole di zuppa, quella che non sia né troppo calda né troppo fredda, giusta.
Calcolare le dimensioni e ‘estensione della fascia di abitabilità di una stella ci permette di capire quanto debba essere grande l’orbita di un pianeta per essere potenzialmente in grado di sostenere la vita.
Per comodità di calcolo verranno qui usati i parametri del nostro Sistema Solare ma conoscendo il flusso energetico (ossia la temperatura superficiale) di una qualsiasi stella e il suo raggio, allora sarà possibile usare questi nei calcoli che qui presentiamo purché si usino le stesse unità di misura.

  • Temperatura superficiale del Sole T 5778 Kelvin
  • Raggio del Sole in unità astronomiche R 6,96×1005km1,496×1008km=4,652×1003AU
  • Distanza dal Sole in unità astronomiche a
  • Albedo del pianeta A (nel caso della Terra è 0,36)
Credit: Il Poliedrico

Credit: Il Poliedrico

Come spiegato anche nell’illustrazione qui accanto il flusso luminoso, e quindi ovviamente anche la temperatura, obbedisce alla semplice legge geometrica dell’inverso del quadrato della distanza.
La luminosità di una stella non è altro che la quantità di energia emessa per unità di tempo e considerando una stella come un corpo nero perfetto, si trova che L=4πR2σT4, dove σ è la costante di Stefan-Boltzmann.
Pertanto un pianeta di raggio Rp in orbita alla distanza a dalla sua stella di raggio R riceve una certa quantità di energia che riemette nello spazio come un corpo nero e raggiungendo perciò un equilibrio termico con il flusso di energia ricevuto. πRp24πa2=(Rp2a)2
Il pianeta offre solo metà di tutta la sua superficie alla stella (2πRp2), per questo si è usato questa forma, perché il flusso intercettato è pari alla sezione trasversale del pianeta (πRp2), non tutta la sua superficie, mentre invece tutta la superficie del pianeta, quindi anche la parte in ombra, è coinvolta nella riemissione di energia (4πRp2).
Una parte del’energia ricevuta dal pianeta viene riflessa comunque nello spazio in base al suo indice di riflessione (fosse idealmente bianco la rifletterebbe tutta così come se fosse idealmente nero l’assorbirebbe tutta); questo indice si chiama albedo A e varia di conseguenza tra 1 e 0. La forma “1A” consente di stabilire quanta energia è quindi assorbita da un pianeta: (1A)×4πR2σT2×(Rp2a)2

Semplificando il tutto e eliminando per un attimo anche la superficie della sezione trasversale del pianeta, quasi insignificante come contributo al calcolo, si raggiunge questo risultato: Teq4=(1A)T4(R2a)2 Teq=(1A)1/4T(R2a)
Se usassimo questi valori per la Terra usando come è stato detto le lunghezze espresse in unità astronomiche otterremo: Teq=(10,36)1/45778(4,625×100321)=249K

Purtroppo non è dato sapere a priori l’albedo di un qualsiasi pianeta, esso varia infatti col tipo e composizione chimica dell’atmosfera e del suolo di un pianeta, per questo può risultare conveniente omettere il computo dell’albedo nel caso di un calcolo generale senza per questo inficiarne nella bontà, un po’ come è stato fatto anche per la superficie del pianeta prima. Così la formula può essere riscritta più semplicemente come Teq=T(R2a)
Se ora volessimo calcolare entro quale intervallo di distanza dalla stella vogliamo trovare un certo intervallo di temperatura potremmo semplicemente fare l’inverso per aver il risultato espresso in unità astronomiche:a=12(TTeq)2R

Diagramma di fase dell'acqua. La possibilità dell'acqua di rimanere allo stato liquido a pressioni molto elevate le consente di svolgere il ruolo di lubrificante delle placche continentali. Fonte dell'immagine: Wikipedia.

Diagramma di fase dell’acqua in ordine alla temperatura e pressione.
Fonte dell’immagine: Wikipedia.

Per trovare un intervallo di temperature compreso tra 240 K e 340 K nel Sistema Solare dovremmo andare tra i 1,35 e 0,67 AU.
Perché ho usato questo strano intervallo di temperature pur sapendo che alla pressione canonica di 1 atmosfera l’acqua esiste allo stato liquido tra i 273 e i 373 K?
Semplice 2! Ogni pianeta possiede una sua atmosfera (ce l’ha anche la Luna anche se questa è del tutto insignificante) che è in grado di assorbire e trattenere calore, è quello che viene chiamato effetto serra. L’atmosfera della Terra ad esempio garantisce a seconda dei modelli presi come riferimento da 15 a 30 e più gradi centigradi di temperatura in più rispetto alla temperatura di equilibrio planetario, consentendo così all’acqua di essere liquida pur restando ai margini superiori della zona Goldilocks del Sole.

Aggiornamento

Non riporterò questo aggiornamento di stato nel sito Tutti Dentro dove questo articolo è uscito in contemporanea a qui. Questa aggiunta è mia e me ne assumo ogni responsabilità verso i lettori per quello che sto per scrivere.

[table “70” not found /]

Forse non è stato compreso bene che nonostante il ruolo dell’albedo sia importantissimo nel calcolo esatto per stabilire se una precisa orbita cade all’interno di una zona Goldilocks, esso purtroppo è un dato che non è possibile stabilire per adesso nel caso dei pianeti extrasolari. Si possono considerare un ampio spettro di possibilità, diciamo tra un albedo di 0,99 e 0,01, indicare un valore medio tra questi due oppure scegliere tra uno de valori che sono suggeriti in questa tabella o oppure ancora si può scegliere di non usare affatto l’indice albedo in questa fase di calcolo, come ho fatto deliberatamente io in questa fase. Dopotutto si deve stabilire un discreto intervallo di possibili orbite di un pianeta di massa non bene definita su un ampio intervallo di possibili temperature di equilibrio attorno ad una stella lontana.
Prendiamo ad esempio il Sistema Solare visto da una manciata di parsec e si supponga fosse stato possibile identificare sia Venere che la Terra, di conoscere la loro distanza e il loro  albedo.
Applicando l’equazione sprovvista del computo dell’albedo qui sopra (12(TTeq)2R) , essa restituisce una temperatura di equilibrio, che per Venere sappiamo essere di  253 kelvin, di 327  K, ma che corretta per l’albedo, ossia: a=12(TTeq)2R1A dà esattamente il valore corretto. Un errore del 29% in più ma che per albedo inferiori tende quasi ad annullarsi.
Un altro metodo che era stato proposto e fatto passare come l’unico valido a=1A2R(TTeq)2 sembra esattamente equivalente allo stesso metodo corretto per l’albedo qui suggerito (12(TTeq)2R1A), ma si dimostra essere del tutto fallace se usato senza tenere conto dell’albedo; con lo stesso esempio precedente si arriva a definire la temperatura di equilibrio di Venere a 462 K, l’83% in più.

Sono piccolezze, è vero, e di solito non amo polemizzare – anche se qualcuno potrebbe pensare il contrario – e ammetto che non sono un gran genio nella matematica, di solito faccio dei casini enormi nelle semplificazioni (ma non in questo caso). Ma amo sperimentare, rifare i calcoli decine di volte prima di scriverli e pubblicarli, per cui quando lo faccio so che sono corretti e testati decine di volte come in questo caso.
Ho scelto di offrire il mio modesto aiuto a una cara amica per questo appuntamento e scoprire che presuntuosamente veniva affermato che questo lavoro era sostanzialmente errato non l’ho proprio digerito. Con questo  stupido esempio ho voluto mostrare la bontà di questo lavoro  che consente a scapito di un lieve margine di errore di poter essere usato anche senza tener conto dell’albedo di un pianeta; ho scelto Venere perché avendo l’albedo più elevata era quello che più avrebbe messo in difficoltà il procedimento descritto in questo articolo (se avessi usato la Terra avrei avuto un 12% a fronte di 58%).
Quindi il mio invito è quello di non raccattare formule a caso qua e là sulle pubblicazioni più disparate e spacciarle per buone senza averle prima provate, smembrate e ricomposte; qui l’errore è evidente, non serve molto per vederlo. Potreste dire poi delle castronerie che prima o poi si rivelano per quel che sono: ciarpame.

Global Warming for dummies (seconda parte)

Nella prima parte di Global Warming for dummies mi sono speso a spiegare come si possa senza ombra di dubbio attribuire all’uso dei combustibili fossili — e quindi in definitiva alle attività umane — la responsabilità dell’innalzamento dei livelli di anidride carbonica nell’atmosfera fino a valori mai raggiunti nell’ultimo milione di anni.
Guardate Chernobyl dopo quasi 40 anni: lì dove l’uomo non può più arrivare sono tornate le foreste, gli orsi europei e i lupi. La natura non ha bisogno dell’uomo: siamo noi che abbiamo bisogno di lei per esistere; portiamole il rispetto che le è dovuto.

La Terra riceve energia dal Sole. Un corpo nero ideale alla stessa distanza dalla Stella riemetterebbe quell’energia con una temperatura di 255 K. In realtà la temperatura media della Terra è un po’ più alta (288 K). Questo è dovuto all’effetto serra generato dalla sua atmosfera. Credit: Il Poliedrico

Spiegare in parole semplici cosa fosse l’effetto serra non è così facile come sembra: noi lo chiamiamo effetto serra perché l’accumulo in eccesso di calore (energia termica) provocato da alcuni tipi di gas è sostanzialmente uguale a quello che si sperimenta all’interno di una serra chiusa. Ma se la serra ricava il suo calore bloccando la convezione dell’aria al suo interno, ossia che la stessa aria viene esposta continuamente al tepore di una sorgente (il Sole o una stufa), ragion per cui il calore tende ad accumularsi, l’effetto serra atmosferico ha origini fisiche molto diverse. La comprensione di questi meccanismi deve essere alla base di qualsiasi discussione sul cambiamento climatico in atto.

Tutto ha inizio dall’energia irradiata dal Sole e la distanza che c’è tra la Terra e la Stella. Chi legge questo Blog sa che ho già illustrato questo argomento quando spiegavo cos’è una zona Goldilocks[1] insieme a Sabrina Masiero del Gal Hassin e anche in altri articoli precedenti sul medesimo argomento. Per gli altri faccio un breve riassunto: qualsiasi corpo — idealmente di corpo nero, ossia che assorbe (e poi riemette) tutta l’energia che riceve — si trova in uno stato di equilibrio termico con una sorgente di energia che è dettato unicamente dalla quantità di energia emessa da questa diviso per l’area della sfera basata sulla distanza tra il corpo e la prima1. In altre parole, se la Terra fosse distante la metà dal Sole riceverebbe quattro volte più energia mentre se fosse il doppio più lontano ne riceverebbe appena un quarto di adesso. Attualmente la Terra si trova a una distanza tale dal Sole che il suo equilibrio termico — tenendo conto di un albedo planetario di 0.30 —  è di circa 255 gradi Kelvin2, ossia circa 18° sotto lo 0 Celsius! Questo significa che tutta l’energia che riceve la Terra dal Sole, se questa fosse idealmente un corpo nero, verrebbe riemessa nel lungo infrarosso, con un picco di emissione attorno agli 11μm (vedi immagine qui a lato),  Però la temperatura mediata del Pianeta, cioè depurata dalle variazioni regionali e zonali, è di circa 288 K, ossia di circa 15° centigradi. La differenza tra 255 e 288 è il calore che che trattiene la nostra atmosfera proprio come una serra, ma l’analogia appunto finisce qui!

La composizione della nostra atmosfera ci è nota e ce la insegnano fin dalle elementari (io almeno ricordo di conoscerla fin da allora):

Composizione dell'atmosfera errestre

La risonanza asimmetrica di dipolo delle molecole è alla base dell’effetto serra causato da queste. Il concetto vista di è da intendersi esemplificativo. Credit: Il Poliedrico

I due gas principali (azoto e ossigeno in forma molecolare, ricordiamolo) compongono da soli circa il 99% della nostra atmosfera e questo fa un po’ la differenza tra un pianeta con temperature accettabili come la Terra e e un pianeta come Venere col 95% di CO2.
Il segreto sta nella natura delle molecole diatomiche di azoto e ossigeno che possono eseguire solo vibrazioni simmetriche che non alterano il loro momento di dipolo e che quindi sono piuttosto trasparenti alla radiazione incidente. I gas più complessi, come ad esempio l’anidride carbonica, un gas triatomico, può produrre sia vibrazioni simmetriche che quelle che alterano il momento di dipolo della molecola, col risultato che queste oscillazioni la fanno entrare in risonanza ad una particolare lunghezza d’onda. Questo significa che a tali lunghezze d’onda la radiazione in ingresso viene assorbita e poi riemessa dalle molecole che entrano così in risonanza, il medesimo meccanismo che è alla base del concetto del laser. In pratica l’energia radiativa che viene catturata da quelle molecole viene poi diffusa in tutte le direzioni e intercettata da altre molecole uguali, e così via;  è così che a quella caratteristica lunghezza d’onda l’atmosfera risulta opaca.
Questo meccanismo che brevemente ho cercato di illustrare non vale soltanto per l’anidride carbonica, ma anche per tutte le altre molecole che possono avere vibrazioni sbilanciate nel loro momento di dipolo come l’acqua (vapore acqueo, H2O), il metano (CH4), il protossido di azoto (N2O) e così via. In pratica tutti i gas biatomici composti da atomi differenti, come il monossido di carbonio (CO) e tutti i gas composti da 3 o più atomi, per esempio l”ozono (O3), assorbono e riemettono radiazione infrarossa.

Come si può vedere dalla tabella qui sopra in realtà il contributo netto dell’anidride carbonica al riscaldamento globale non pare essere così rilevante quanto quello prodotto dal vapore acqueo. Ma c’è una cosa molto importante che occorre tenere bene a mente: l’acqua di superficie del pianeta, ossia mari, fiumi, ghiacciai e oceani, ricoprono più del 70% del globo. Questo significa che ogni più piccolo aumento della capacità di trattenere calore nell’atmosfera si traduce immediatamente in un aumento della quantità di vapore acqueo contenuto in essa e quindi anche dell’energia termica trattenuta. E anche se l’aumento della copertura nuvolosa provoca un aumento dell’albedo, ovvero la riflessione della radiazione solare in ingresso fino al 90%, altrettanto questa impedisce alla radiazione del pianeta di uscire, un po’ come una coperta trattiene il caldo.
Questo è un circolo vizioso: se non viene trovato il modo di fermarlo non può che peggiorare. E l’unico modo è quello di impedire che altra CO2 si accumuli nell’atmosfera e che porti alla formazione di altro vapore acqueo e anzi, sarebbe pure opportuno cercare di ridurla. E per farlo non c’è che un modo veloce, rapido e naturale: piantumare nuove foreste e rigenerare quelle già esistenti, ridurre se non proprio eliminare l’uso dei combustibili fossili e i loro derivati; insomma occorre ridurre l’impronta antropica nell’ambiente: proprio il contrario di quello che incoscientemente abbiamo fatto nell’ultimo secolo perché i primi allarmanti segnali di quello che stavamo facendo al nostro pianeta sono conosciuti da almeno altrettanto3.
Finora gli oceani sono riusciti a stabilizzare abbastanza bene il clima ma questa loro capacità è quasi arrivata al suo limite. Inoltre la loro capacità di assorbire l’anidride carbonica diminuisce con l’aumentare della loro temperatura mentre l’aumento dell’acidificazione di questi è letale per gli ecosistemi più fragili come le barriere coralline che sono alla base della catena alimentare dei mari.

C’è più energia nell’aria

Ed eccoci al rebus che crea tanto sconcerto ai profani: come può essere in atto il Riscaldamento Climatico se qui, oggi, fa freddo?
Tralasciamo per un attimo la confusione che c’è tra clima e condizione meteorologica come  ho spiegato la volta scorsa. Spesso le persone credono che siano sinonimi ma non è affatto così: il clima si riferisce a un arco di tempo lungo, non necessariamente globale ma che comunque interessa una regione più o meno vasta o con caratteristiche simili: il clima mediterraneo, oppure tropicale o quello desertico; il tempo meteorologico invece interessa una porzione limitata nel tempo e nello spazio, ad esempio qui domenica quasi certamente pioverà mentre a Marsiglia oggi fa caldo. Allo stesso modo, se dico che nell’era pleistocenica i dati indicano che era più caldo di ora, mi riferisco all’andamento globale del clima di quel periodo e non che magari un giorno del Pleistocene accadde che nevicò sui Balcani.
Chiarito — una volta per tutte spero — questo concetto, passo ad illustrare perché proprio la settimana scorsa qui era freddo: nell’atmosfera c’è più energia; molta più energia di quanto serva a far sì che le escursioni termiche siano piccole come le vorremmo.  Immaginate di segnarvi anno dopo anno le temperature della vostra località sul calendario e poi di riportare quei valori su di un grafico; oggi le serie storiche di quasi tutto il mondo sono liberamente disponibili a chiunque: qui accanto potete vedere quella di New York. Come potete vedere quella che appare è una sinusoide: un picco minimo nella stagione più fredda e un massimo in quella più calda.
Se l’energia atmosferica fosse contenuta, anche le oscillazioni tra il minimo e il massimo lo sarebbero. Ma con l’aumentare dell’energia intrappolata nell’atmosfera anche le escursioni termiche aumentano di conseguenza e si fanno sempre più estreme e imprevedibili, come ho cercato di illustrare nella figura qui sopra. Ecco spiegato perché qui oggi fa quasi fresco mentre in questi giorni la Cina sperimenta un’insolita ondata di calore.

Conclusione

I rapporti isotopici che inchiodano le responsabilità umane nell’aggravare il naturale effetto serra della nostra atmosfera sono lì, nell’aria che respiriamo ogni istante; essi sono disponibili a chiunque abbia interesse a volerli studiare. Certo, occorre avere accesso alle strumentazioni appropriate per leggerli oppure ci si può rivolgere a un ente terzo come il NOAA (National Oceanic and Atmospheric Administration) verso cui confluiscono tutte le serie storiche mondiali a cui generalmente i climatologi di tutto il mondo fanno riferimento, o a enti analoghi — in Italia ci sono le ARPA (Agenzia Regionale per la Protezione Ambientale)  — oppure a qualche università. Anche per farsi spiegare meglio di quanto abbia fatto io qual’è la differenza tra clima e tempo e cosa sia il Global Warming ci sono fior di accademici e professori — so che qualche fantademente usa questo termine in modo dispregiativo ma non me ne curo — pronti a farlo gratis.
Con queste due puntate ho tentato, e spero di esservi riuscito, a fare un po’ di luce su questo bruciante argomento; mi auguro che da adesso non vi facciate più trarre in inganno da incoscienti vestiti per bene che danno fiato alle trombe esclusivamente per i loro interessi.

Altre forme di vita

Il Moloch orridus o Drago Spinoso, è una lucertola dei deserti australiani. Le sue scaglie sono increspate per permettere all’animale di raccogliere l’acqua da ogni parte del suo corpo. Così quando hanno bisogno di bere, è sufficiente che tocchino l’acqua che per il principio di capillarità questa viene inviata alla bocca attraverso la pelle.

L’altro ieri su una pagina Facebook che frequento (Gruppo Locale Bar) è apparsa una domanda assai intrigante:
Date le estreme diversità nelle forme di vita apparse qui sulla Terra nel corso delle ere, dagli organismi microscopici unicellulari ai pachidermi del mesozoico come i titanosauri, quale potrebbe essere l’aspetto delle forme di vita animali in un mondo che è tre o quattro volte più grande della Terra? Ci sono limiti biologici o ambientali strutturali che condizionano l’evoluzione?

Le domande non sono mai banali

Rispondere a questa domanda non è affatto semplice. Noi non conosciamo alcuna forma di vita extraterrestre, per ora possiamo solo speculare con quello che finora oggi abbiamo imparato qui sulla Terra nella speranza che poi i fatti un giorno ci diano ragione.
Possiamo intuire che esistano dei limiti fisici oltre il quale un pianeta possa considerarsi inadatto ad ospitare qualsiasi forma di vita quale noi la conosciamo, l’indice ESI [cite]https://ilpoliedrico.com/2014/06/lindice-esi-earth-similarity-index.html[/cite] e una ecosfera favorevole all’acqua liquida [cite]https://ilpoliedrico.com/2016/07/lampiezza-zona-goldilocks.html[/cite] possono aiutare a tracciare un quadro abbastanza ragionevole su dove cercare la vita extraterrestre.
Sulla Terra sperimentiamo le medesime leggi fisiche che vediamo operare in ogni angolo dell’Universo che scrutiamo: la stessa legge di gravità che fa qui cadere le foglie in autunno e che tengono la Luna in orbita attorno alla Terra, tiene insieme le stelle anche nelle galassie più lontane; la stessa chimica che governa qui, funziona con le stesse regole anche nelle nebulose più lontane della nostra galassia così come ai confini dell’Universo. Ma ancora non sappiamo se le stesse leggi biologiche terrestri – DNA, meccanismi biologici etc. – possono essere applicabili anche altrove.
Quindi è estremamente importante sapere – o immaginare – su quale biologia queste forme di vita aliena sono basate. Quasi sicuramente esse sono basate sul carbonio-acqua – idrogeno, ossigeno e carbonio sono gli atomi più diffusi dell’Universo – ma potrebbero avere una biologia, e quindi meccanismi di risposta ai processi cellulari, completamente dissimili dai nostri. DNA diversi, aminoacidi e proteine totalmente diverse da quanto noi abbiamo immaginato e supposto potrebbero influenzare i percorsi evolutivi in modi impensati. Basta guardare le creature che esistono, o sono esistite qui sulla Terra per rendersi conto che per ogni habitat esistono decine di risposte evolutive diverse della stessa biologia. E lo stesso ci si deve aspettare che debba accadere anche negli altri mondi. Della fisica e della chimica possiamo vederne e studiarne gli effetti e le interazioni anche nei più remoti angoli dell’Universo che riusciamo a raggiungere ma della biochimica e della biologia no; possiamo, per ora, prender per buono e, per il principio di mediocrità,  universalmente valido quello che osserviamo sulla Terra.

Riflessioni ad alta voce

Un esemplare di Bathynomus giganteus.
Questi crostacei abissali vivono negli oceani oltre i 170 metri di profondità, dove la pressione supera le 18 – 20 atmosfere.

Speculativamente, perché niente qui è certo fuorché l’incertezza, qui sulla Terra sono stati scoperti batteri che vivono nelle rocce compatte del sottosuolo, estremofili che sopportano 115-130 MPa di pressione, altri che vivono fino a 120° Celsius o nelle acque radioattive dei reattori nucleari. Niente sembra poter ostacolare la vita quando questa trova il modo di attecchire.
Su pianeti il doppio o il triplo della Terra le forme di vita multicellulari potrebbero essersi sviluppate di conseguenza al seguito del doppio o del triplo della gravità. Qui la maggior parte delle forme di vita animale superiore ha scelto quattro arti per la locomozione: un buon compromesso tra efficienza nella locomozione e la complessità del meccanismo di controllo. In un mondo ad alta gravità la stabilità nella locomozione potrebbe aver preso la via di più zampe e di un corpo più schiacciato e tozzo come quello degli isopodi terrestri. Un corpo dotato di corazza pensato più per prevenire i danni da caduta che per la difesa dagli attacchi di altri predatori, molte piccole zampe piuttosto che quattro semplici arti, e così via. Anche l’intero sistema vascolare sarebbe completamente diverso, dovendo rispondere ad una gravità più alta.
Oppure, nei pianeti più grandi potrebbero non essersi mai sviluppate grandi forme di vita animale o esistere solo quelle confinate nei mari e negli oceani di acqua liquida dove la spinta idrostatica mitiga la gravità, mentre sulla terraferma colonie batteriche o di microorganismi vegetali potrebbero estendersi per chilometri quadrati nutrendosi di elementi minerali prelevati dal suolo e di radiazioni solari.

Civiltà extraterrestri

Sono da sempre convinto che la Vita sia parte del processo evolutivo universale. Penso che essa sia la naturale conseguenza delle leggi fondamentali che regolano questo universo. È soltanto di pochi giorni fa la scoperta di nubi fredde di monossido di carbonio  (CO) a 10 miliardi di anni luce [cite]http://science.sciencemag.org/content/354/6316/1128[/cite], segno che la primissima generazione stellare era riuscita già a sintetizzare ed espellere ingenti quantità di ossigeno e carbonio già solo quasi quattro miliardi di anni dopo il Big Bang. In fondo quali elementi possono essere più significativi in una entità biologica se non idrogeno, carbonio, ossigeno, più una spruzzata di pochi altri elementi?
E credo che l’intelligenza intesa nella sua forma più semplice, cioè nella capacità di valutare e scegliere la migliore strategia di sopravvivenza, sia anch’essa altrettanto diffusa là dove è apparsa la Vita.
Ma pur partendo da queste premesse credo che ambienti adatti alla Vita siano rari nell’Universo. Non impossibili ma rari. La Terra è uno di questi luoghi. Una diversa orbita, una diversa densità o un diverso asse avrebbero certamente compromesso il delicato equilibrio di pressione, temperatura e insolazione che qui sono stati fondamentali per lo sviluppo di forme di vita superiori. Anche la stabilità del Sole e la favorevole orbita galattica hanno evitato che in questi quasi 5 miliardi di anni (che non sono poi così pochi, circa un terzo dell’età dell’Universo) il nostro pianeta venisse irrimediabilmente sterilizzato dai raggi ed eventi cosmici sfavorevoli. Sì certo, ci sono stati anche per la Terra dei periodi di crisi profonda, ma se questo indica che la Vita è veramente tenace ove attecchisce, dimostra anche che le forme di vita superiori possono essere molto rare e anche molto fragili.
Se non fosse stato per il meteorite di Chicxulub [cite]https://ilpoliedrico.com/2011/03/la-gola-del-bottaccione.html[/cite] e le eruzioni del Deccan [cite]https://it.wikipedia.org/wiki/Trappi_del_Deccan[/cite] forse la specie umana non sarebbe mai esistita, mentre altri eventi cruciali nella nostra storia avrebbero potuto spingerci a non sviluppare mai una civiltà tecnologicamente avanzata.
Poi c’è anche un altro aspetto che spesso viene dimenticato: l’Universo è sì vasto da rendere anche l’evento più raro come potenzialmente ripetibile, ma è anche esteso nel tempo. Anche se decidessimo di considerare gli ultimi 8 – 10 miliardi di anni come potenzialmente adatti alla Vita nell’Universo, questo è un lasso di tempo enorme se paragonato ai 200 mila anni dell’uomo moderno e che da appena un centinaio di anni abbiamo imparato a capire cos’è veramente il Cosmo.

È difficile sperare che un’altra civiltà si sia sviluppata più o meno quando la nostra e che sia anche a portata di dialogo; è ben più probabile che io – noi  fossimo qui in questo luogo e momento l’unico angolo di Universo abbastanza evoluto da porsi delle domande sulla propria esistenza. Le domande non sono mai banali.

LUCA il progenote

Il Peccato originale e cacciata dal Paradiso terrestre è un affresco di Michelangelo Buonarroti, dipinto attorno all'anno 1510 nella volta della Cappella Sistina, nei Musei Vaticani a Roma,

Il Peccato originale e cacciata dal Paradiso terrestre è un affresco di Michelangelo Buonarroti, dipinto attorno all’anno 1510 nella volta della Cappella Sistina, nei Musei Vaticani a Roma,

Nella Genesi biblica c’è un passo che reputo molto significativo: la cacciata dal Paradiso.
Eva, la figura mitologica della prima donna, spinta dalla’incarnazione del Male inteso come l’opposto del Divino, suggerì al suo compagno Adamo ad assaggiare il Frutto Proibito colto dall’Albero della Conoscenza. Fu allora che la coppia primigenia si accorse di essere nuda di fronte alla vastità del Paradiso e venne cacciata.
Amo pensare che il Frutto dell’Albero della Conoscenza sia l’allegoria della Curiosità. E come una di quelle varietà più piccanti di peperoncino che spinge i loro consumatori a ingerire liquidi nel vano sforzo di arginare il disagio, la Curiosità anima la sete di conoscenza che da sempre ci distingue dalle altre specie animali. In questa mia personale interpretazione il Peccato Originale non è altro che l’essenza del Frutto Proibito che si tramanda a tutte le generazioni del genere umano, così come la nudità della Cacciata dal Paradiso la vedo come la rivelazione dell’ignoranza dell’Uomo verso tutto ciò che lo circonda.
L’unico mantello che possa coprire l’umanità consiste nel placare la sua innata sete di conoscenza [1. Ovviamente la mia è solo una libera e personale interpretazione del mito, ma trovo che sia una chiave di lettura che merita attenzione e approfondimento.] e
 questo blog lo si può interpretare come il tentativo di espiare la mia parte di Peccato Originale.

Per i cristiani e gli ebrei il Libro della Genesi spiega come sia stato creato l’Universo e la Vita. Un passo particolare descrive la creazione dell’Uomo: «  Allora il Signore Dio plasmò l’uomo con polvere del suolo e soffiò nelle sue narici un alito di vita e l’uomo divenne un essere vivente. »   (Genesi 2,7)

La generazione spontanea

a

Cavalier-Smith propone solo due grandi domini tassonomici: Eukaryota e Prokaryota. Il dominio prokaryota in realtà è l’unione dei due domini precedenti, che ora diventano regni, Bacteria e Archaea. Questo diagramma mostra i principali tipi di cellula del mondo vivente e la loro probabile evoluzione partendo da organismi ancestrali comuni. Credit: Cavalier-Smith, 2004

Questo è un chiaro esempio di come nell’antichità si cercasse di spiegare come sia sorta la Vita. Oggi parleremmo di abiogenesi (dal greco a-bio-genesis, “origini non biologiche”), ma esso non è un concetto moderno, bensì è antico quasi quanto l’uomo. Le culture abramitiche convergevano nell’indicare sia l’Uomo che tutti gli altri esseri superiori (cani, cavalli, uccelli ad esempio) fossero stati creati per intervento divino, mentre quelli inferiori (mosche, cimici, blatte etc.) traessero origine dallo sporco e dal sudore. Anche nell’antica Cina esistevano credenze analoghe, così come anche nella cultura babilonese, da cui discendono appunto le moderne religioni monoteiste.
Nel pensiero classico greco la vita era direttamente collegata alla materia. Essa appariva spontaneamente qualora le condizioni ambientali le fossero favorevoli, un pensiero che in astratto è molto più moderno di quanto di primo acchito si creda, come vedremo più avanti. Aperti sostenitori della teoria della generazione spontanea furono filosofi del calibro di Talete, Democrito ed Epicuro, ma fu Aristotele che ne fece una sintesi accurata che sopravvisse fin dopo il Rinascimento. Egli sosteneva che gli esseri viventi nascessero da altri organismi simili ma che talvolta avrebbero potuto anche generarsi spontaneamente dalla materia inerte 1. Perfino pensatori famosi come Newton, Cartesio e Bacone sostenevano l’idea della generazione spontanea della vita.

Dio plasmò […] dalla polvere e soffiò […] un alito di vita.

Però la rivoluzione del pensiero scientifico introdotta da Galileo Galilei non mancò di influenzare anche la biologia. L’aretino Francesco Redi fu uno dei primi naturalisti a sperimentare, e a confutare, la generazione spontanea della vita. Egli contestò l’idea che i vermi sorgessero spontaneamente dalla carne putrefatta. Ben conscio che le sue scoperte minavano la posizione aristotelica della Chiesa, Redi fu molto cauto nel divulgare le sue scoperte; quindi fece in modo che le sue interpretazioni fossero sempre basate su passi biblici, come ad esempio il famoso adagio: “Omne vivum ex vivo” (Tutta la vita viene dalla vita).
Il naturalista aretino non fu il solo, nei decenni successivi molti altri scienziati arrivarono alle stesse conclusioni dimostrando come il calore potesse rendere sterile una coltura. In questo campo furono importanti le ricerche del gesuita Lazzaro Spallanzani 2 nel 1757 e di Theodor Schwann nel 1836.
Nonostante tutto erano ancora molti i naturalisti ancora convinti della generazione spontanea della vita. Ma nel 1864 un esperimento del francese Louis Pasteur pose definitivamente fine all’antica visione. Egli sterilizzò un brodo di carne dentro una beuta col collo piegato prima verso il basso e poi verso l’alto senza chiuderlo. In questo modo l’aria sarebbe potuta entrare nel recipiente senza alcun ostacolo tranne che per le impurità dell’aria che si sarebbero depositate sul fondo della curva del collo della beuta; se l’aria effettivamente conteneva un qualsiasi calore vitale questo avrebbe contaminato il brodo. Invece la coltura non produsse microorganismi né altre forme di vita. Ma quando Pasteur ebbe rotto il collo della beuta i germi ricomparvero subito nel brodo.
Fu così dimostrato definitivamente che in assenza di contaminazione da parte di altra materia biologica non poteva esserci una generazione spontanea della vita come fino ad allora si era inteso; il concetto di generazione spontanea era sbagliato, semmai si doveva parlare di riproduzione spontanea. Il motto di Francesco Redi era salvo.

Il moderno concetto di abiogenesi

Zoonomia, Or, The Laws of Organic Life, in three parts (Erasmus Darwin, 1803)

« Would it be too bold to imagine that, in the great length of time since the earth began to exist, perhaps millions of ages before the commencement of the history of mankind would it be too bold to imagine that all warm-blooded animals have arisen from one living filament, which the great First Cause endued with animality, with the power of acquiring new parts, attended with new propensities, directed by irritations, sensations, volitions and associations, and thus possessing the faculty of continuing to improve by its own inherent activity, and of delivering down these improvements by generation to its posterity, world without end! »
« Sarebbe osare troppo immaginare che, nel lungo periodo di tempo da quando la terra ha cominciato la sua esistenza, forse milioni di secoli prima dell’inizio della storia dell’umanità, che tutti gli animali a sangue caldo siano cresciuti da un singolo filamento vivente, che la grande Causa Prima indusse alla vita, con la possibilità di acquisire nuove parti, migliorato da nuove propensioni, guidato da nuovi stimoli, sensazioni, volontà ed associazioni, e per cui capaci di continuare a migliorare per propria attività naturale, e di consegnare questi miglioramenti attraverso la riproduzione alla propria prole, ed al mondo, senza fine! »

Tutto mostrava che la vita potesse originarsi soltanto da altra vita, o come suggeriva Charles Darwin, da forme di vita più semplici preesistenti.
Charles Darwin, naturalista e geologo britannico, scrisse il suo più celebre saggio “L’origine delle specie” nel 1859, partendo dalle riflessioni e gli appunti di viaggio racccolti nei suoi celebri viaggi attorno al mondo col brigantino Beagle, che già erano apparsi in altri lavori minori del celebre scienziato.
Anche se è indubbiamente giusto ricordare Charles Darwin come il padre della teoria sull’evoluzione delle specie, è altrettanto opportuno ricordare l’humus culturale della sua formazione. Suo nonno, Erasmus Darwin, nel 1794 scrisse Zoonomia, un trattato di medicina che in sé suggeriva già alcune idee sulle teorie evolutive che poi sarebbero state fonte di ispirazione per il naturalista francese Jean-Baptiste de Lamarck. Il lamarckismo 3 è probabilmente la prima teoria evolutiva coerente, anche se oggi ampiamente confutata dalle esperienze scientifiche e di laboratorio, in cui si cerca di superare il concetto di immutabilità delle specie come era raccontato dai filosofi greci e dalla Bibbia.
L’idea di una primigenia forma di vita molto semplice riapre il dibattito su chi o cosa ci sia stato prima. Un po’ come il paradosso dell’uovo e della gallina. Chi è nato prima? Per il misticismo religioso non ci sono dubbi: è tutto merito del divino del credo di appartenenza, per gli scettici qualcos’altro.
È così che l’abiogenesi, data per confutata dagli esperimenti di Pasteur, torna prepotentemente in auge col darwinismo per cercare di rispondere a cosa ci sia stato prima delle prime forme di vita.
Oggi ci riferiamo a questo organismo estremamente semplice chiamandolo LUCA (Last Universal Common Ancestor), un antenato comune a tutti i regni (eucaryota e prokaryota) e domini [cite]http://www.ncbi.nlm.nih.gov/pubmed/15306349[/cite] e quindi comune a tutte le forme di vita esistenti sulla Terra. Il riferimento a questo essere animato è fin troppo evidente nel pensiero di Erasmus Darwin. Ma anche LUCA deve essere venuto da qualche parte, ci devono essere stato qualcos’altro prima di lui, qualcosa che prima era inanimato e che poi è diventato vita.
Possiamo attenderci che una serie di eventi chimici ed energetici abbia coinvolto atomi e molecole combinandoli poi in molecole via via più complesse finché esse non sono state in grado di autoreplicarsi 4 [cite]http://dx.doi.org/10.1063/1.4818538[/cite].
Anche la discussione tra origine autoctona o panspermia lascia sostanzialmente invariata la risposta, decidere se le molecole prebiotiche si siano sviluppate qui sulla Terra o se sono piovute dallo spazio grazie alle comete [cite]http://ilpoliedrico.com/2016/05/alla-ricerca-delle-origini-della-vita.html[/cite]. È come se di fronte a una sala superbamente arredata ci si chiedesse se l’arredatore abbia da sé abbattuto gli alberi e costruito i mobili o abbia usato le tavole dell’Ikea.

Il progenote

phylogenetic-tree-of-life

Questo diagramma, sviluppato studiando l’rRNA comune a quasi tutti gli organismi del pianeta, mostra come i tre domini vita Archea, Bacteria e Eucaryota, siano in realtà imparentati fra loro tramite un ultimo antenato comune universale (il tronco nero nella parte inferiore della struttura). Si noti che la maggior parte dei modelli moderni ora pongono l’origine degli eucarioti all’interno della stirpe archaea. Credit: Wikimedia, CC BY-SA

All’incirca negli ultimi 30 anni sono stati compiuti grandi passi nello studio delle sequenze genetiche. Tale successo ha permesso di identificare e studiare sequenze genetiche comuni alla maggior parte delle specie viventi. Questo è risultato essere molto importante per capire i processi evolutivi di interi gruppi etnici e le loro secolari migrazioni (vedi ad esempio gli Etruschi), ma anche a livello di interspecie, proprio appunto per creare un quadro evolutivo coerente della vita sulla Terra. Lo studio tassonomico di sequenze comuni tra le diverse specie, dai batteri all’uomo per intenderci, ha permesso di scrivere alberi filogenetici come questo qui accanto.
L’analisi di oltre 6 milioni di geni codificanti proteine nel RNA ribosomiale 5 [cite]http://dx.doi.org/10.1038/nmicrobiol.2016.116[/cite], o rRNA, di organismi procariotici ha permesso di isolare un gruppo comune di proteine (355 su 286514, un po’ più dello 0,12%)  che potrebbero aiutare a capire l’ambiente ancestrale in cui il progenote deve aver vissuto.
Il mondo di questi organismi ancestrali comuni vissuti quasi tre miliardi e mezzo di anni fa [cite]http://ilpoliedrico.com/2015/01/sedimenti-naturali-e-strutture-fossili.html[/cite] era assai diverso dal nostro. Ancora non esisteva l’atmosfera attuale così ricca di ossigeno [cite]http://ilpoliedrico.com/2010/07/lantica-storia-della-terra.html[/cite] come la conosciamo e da cui quasi tutti gli organismi pluricellulari attuali dipendono, Secondo le proteine sintetizzate dalla componente genetica comune l’ambiente più adatto al progenote era molto simile agli odierni camini idrotermali delle dorsali oceaniche [cite]http://ilpoliedrico.com/2010/07/ce-vita-anche-laggiu.html[/cite]
Questo antenato comune avrebbe metabolizzato idrogeno, usato il biossido di carbonio e di azoto per replicarsi e il ferro come agente catalizzatore negli enzimi cellulari più o meno come ancora oggi fanno molti microbi termofili anaerobici come l’attuale Clostridium thermoaceticum [cite]https://www.ncbi.nlm.nih.gov/pubmed/1900793[/cite].

Al di là quindi delle origini delle molecole organiche complesse, la vita pare essersi sviluppata in maniera autonoma su questo pianeta e in ambienti molto lontani dalla sola energia solare e da quella parossistica dell’atmosfera. Questa scoperta suggerisce che dopotutto anche mondi posti all’esterno di una zona Goldilocks, come ad esempio i satelliti più grandi dei pianeti esterni, potrebbero dare origine a processi biologici importanti e ospitare forme di vita elementare se fossero sede di fenomeni geotermali persistenti.
Niente fulmini, ma il lento cullar del respiro della terra che incontra il mare.

Sistemi stellari multipli e orbite stabili

Nei giorni scorsi è rimbalzata sui media la scoperta di un sistema planetario in un sistema ternario. La notizia in  sé è eccitante, ma il modo in cui è stata trattata da alcune testate a tiratura nazionale è quasi comico, soprattutto perché le stesse esatte parole sono state copiate pari pari da diversi siti generalisti senza alcun controllo. Io stesso avevo provato a segnalare alcune inesattezze 1 attraverso un commento presso un importante quotidiano nazionale ma questo è stato eliminato mentre altri commenti alquanto sciocchi erano stati accolti dai moderatori. Il quadro che ne esce non è confortante per tanta editoria cartacea italiana ma questo purtroppo l’avevo sospettato da tempo.

Una parte della costellazione australe del Centauro centrata sul sistema triplo HD131399, in dettaglio sulla sinistra.

Una parte della costellazione australe del Centauro centrata sul sistema triplo HD131399, in dettaglio sulla sinistra.

HD131399A b è solo uno degli ultimi sistemi stellari multipli che mostrano di ospitare anche un sistema planetario. Non sono molti quelli conosciuti e confermati perché è molto difficile discernere i moti perturbativi radiali dovuti al sistema planetario da quello dovuto alle altre stelle del sistema o usare il metodo dei transiti.
L’intero sistema HD 131399 infatti non è infatti l’unico del suo genere: 55 Cancri , distante 40,3 anni luce dalla Terra 2, è composto da due stelle di cui la principale è solo di poco più piccola del Sole e la compagna, 55 Cancri B, che è almeno sette volte più piccola della prima e a sua volta sospettata di essere doppia, divise da una distanza di 1065 UA. Ebbene, 55 Cancri A possiede un sistema planetario di ben cinque corpi, di cui il più distante 55 Cancri A d [cite]http://arxiv.org/abs/0712.3917[/cite] è a 5,7 UA dalla stella principale.
Altri sistemi stellari doppi o multipli sono ad esempio Tau Boötis, Upsilon Andromedae, Gamma Cephei (la stella polare del prossimo millennio) e così via.
Comunque, i sistemi stellari multipli (cioè composti da più di due stelle), se disposti gerarchicamente [cite]http://adsabs.harvard.edu/abs/1968QJRAS…9..388E[/cite], sono noti per essere stabili; in questi casi le orbite sono divise in coppie vicine che ruotano attorno a un baricentro reciproco che a loro volta orbitano attorno al baricentro comune dell’intero sistema che può essere composto da una stella più massiccia o un’altra coppia di stelle. In fondo questo lo vediamo anche nel Sistema Solare che dinamicamente non è poi così dissimile da un qualsiasi sistema multiplo: i diversi satelliti orbitano attorno ai loro rispettivi pianeti senza che l’attrazione del Sole disturbi significativamente le loro traiettorie mentre questi a loro volta orbitano attorno al Sole. Questo accade perché un qualsiasi oggetto dotato di massa in equilibrio gravitazionale con un corpo più grande può a sua volta esprimere una sfera di influenza che si estende dal proprio centro di massa, chiamata sfera di Hill. La sua espressione matematica deriva dalle equazioni di Newton – e gli studi di Eduard Roche – ma semplificata al massimo  può essere espressa come una sfera di raggio ra(1e)3m3M dove a è la distanza tra i due corpi e M e m sono le loro masse ed e l’eccentricità dell’orbita. Tutto ciò che quindi ricade all’interno di questa sfera è gravitazionalmente legato al corpo responsabile. Ad esempio la sfera di Hill della Terra si estende per un milione e mezzo di chilometri mentre la Luna ne è abbondantemente dentro (384 mila km circa) e così via.

Rappresentazione artistica dell'asteroide 1999 KW4.

Rappresentazione artistica dell’asteroide 1999 KW4.

Un curioso caso di sistema multiplo stabile è testimoniato dall’asteroide lunato (66391) 1999 KW4; in questo caso la sua sfera di Hill varia tra i 120 dell’afelio e i 22 km di raggio al suo perielio, mentre il suo satellite dista  solo a 2,6 km dal centro di massa del sistema.

Orbite planetarie nei sistemi multipli

Tornando a parlare di sistemi stellari multipli, nel 1978 Robert S. Harrington del US Naval Observatory analizzò la stabilità di un sistema planetario all’interno di un sistema stellare multiplo (trovate lo studio originale tra le note a fondo pagina). Egli concluse che un pianeta come la Terra attorno al Sole avrebbe posseduto un’orbita stabile purché l’altra componente del sistema fosse stata almeno tre volte e mezzo più lontana. Se al posto di Giove, o anche un poco più vicino, avessimo avuto invece una stella non più massiccia del Sole stesso la nostra orbita non ne sarebbe stata influenzata. E se tale compagna fosse significativamente meno luminosa del Sole, dal punto di vista radiativo non avrebbe potuto avere un ruolo significativo per lo sviluppo della vita sulla Terra; solo che avremmo avuto due soli nel cielo e che per meta dell’anno le notti non sarebbero state molto buie.
Lo stesso varrebbe anche per i sistemi binari stretti, come Capella 3 per intenderci, ma al contrario. Infatti in un sistema siffatto un pianeta per avere un’orbita abbastanza stabile  attorno a una sola delle due dovrebbe essere ben all’interno della spera di Hill di questa, a non più di due decimi di unità astronomiche, meno di due terzi la distanza di Mercurio dal Sole al suo perielio. Tuttavia, un pianeta distante almeno tre volte e mezza la separazione delle due stelle dal comune centro di massa avrebbe un’orbita stabile trattando le due stelle gravitazionalmente come un singolo oggetto a forma di manubrio. In questo caso, nel sistema capellano, un pianeta simile alla Terra potrebbe avere un’orbita stabile a soli 400 milioni di chilometri dal centro di massa; più o meno la distanza che c’è tra Cerere e il Sole.

Conclusioni

Per completare il quadro riferendosi a una ecosfera utile [cite]http://ilpoliedrico.com/2016/07/lampiezza-zona-goldilocks.html[/cite] si può affermare che essa potrebbe esistere in un sistema multiplo se la distanza tra le due stelle di riferimento fosse almeno 3,5 volte questa, oppure, se questa dovesse essere almeno 3,5 volte più lontana da centro del sistema di riferimento precedente.

Alcuni sistemi planetari scoperti attorno a sistemi stellari multipli:

[table “74” not found /]

[table “75” not found /]

[table “76” not found /]

[table “77” not found /]

[table “78” not found /]


Allegati:

[fancybox url=”https://ilpoliedrico.com/wp-content/uploads/2016/07/Planetary-orbits-in-binary-stars.pdf” caption=”Planetary orbits in a binary stars”]Planetary orbits in a binary stars [/fancybox]

Alla ricerca di forme di vita evolute: i limiti del Principio di Mediocrità

La vita è poi così comune nell’Universo? Oppure l’Uomo – inteso come forma di vita evoluta – è veramente una rarità nel’infinito cosmo? Forse le risposte a queste domande sono entrambe vere.

16042016-2D68D8DD00000578-0-image-a-23_1459508636554Finora il Principio di Mediocrità scaturito dal pensiero copernicano ci ha aiutati a capire molto del cosmo che ci circonda. L’antico concetto che pone l’Uomo al centro dell’Universo – Principio Antropocentrico – ci ha fatto credere per molti secoli in cosmogonie completamente errate, dalla Terra piatta all’idea di essere al centro dell’Universo, dall’interpretazione del moto dei pianeti alla posizione del sistema solare nella Galassia (quest’ultimo ha resistito fino alla scoperta di Hubble sull’espansione dell’Universo).
Per questo è comprensibile e del tutto legittimo estendere il Principio di Mediocrità anche alla ricerca della vita extraterrestre. Dopotutto nulla vieta che al presentarsi di condizioni naturali favorevoli il fenomeno Vita possa ripetersi anche altrove: dalla chiralità molecolare [cite]http://ilpoliedrico.com/2014/10/omochiralita-quantistica-biologica-e-universalita-della-vita.html[/cite] ai meccanismi che regolano il  funzionamento cellulare sono governate da leggi fisiche che sappiamo essere universali.
Una delle principali premesse che ci si attende da un pianeta capace di sostenere la vita è quello che la sua orbita sia entro i confini della zona Goldilocks, un guscio sferico che circonda una stella (in genere è rappresentato come fascia ma è un concetto improprio) la cui temperatura di equilibrio di radiazione rientri tra il punto di ebollizione e quello di congelamento dell’acqua (273 – 373 Kelvin)  intorno ai 100 kiloPascal di pressione atmosferica; un semplice esempio lo si può trovare anche su questo sito [cite]http://ilpoliedrico.com/2012/12/la-zona-circumstellare-abitabile-del-sole.html[/cite]. Ci sono anche altri vincoli [cite]http://ilpoliedrico.com/?s=+goldilocks[/cite] ma la presenza di acqua liquida pare essere fondamentale 1.
Anche se pur con tutti questi limiti il Principio di Mediocrità suggerisce che la biologia a base carbonio è estremamente diffusa nell’Universo, e questo non stento a crederlo. Stando alle migliori ipotesi le stelle che possono ospitare una qualche forma di sistema planetario potenzialmente adatto alla vita solo in questa galassia sono almeno 10 miliardi. Sembra un numero considerevole ma non dimentichiamo che la Via Lattea ospita circa 200 miliardi di stelle. quindi si tratta solo una stella su venti.
orologio geologicoMa se questa stima vi fa immaginare che là fuori ci sia una galassia affollata di specie senzienti alla Star Trek probabilmente siete nel torto: la vita per attecchire su un pianeta richiede tempo, molto tempo.
Sulla Terra occorsero almeno un miliardo e mezzo di anni prima che comparissero le prime forme di vita fotosintetiche e le prime forme di vita con nucleo cellulare differenziato dette eukaryoti – la base di quasi tutte le forme di vita più complessa conosciute – apparvero solo due miliardi di anni fa. Per trovare finalmente le forme di vita più complesse e una biodiversità simile all’attuale  sul pianeta Terra bisogna risalire a solo 542 milioni di anni fa, ben poca cosa se paragonati all’età della Terra e del Sistema Solare!

Però, probabilmente, il Principio di Mediocrità finisce qui. La Terra ha una cosa che è ben in evidenza in ogni momento e, forse proprio per questo, la sua importanza è spesso ignorata: la Luna.
Secondo recenti studi [cite]http://goo.gl/JWkxl1[/cite] la Luna è il motore della dinamo naturale che genera il campo magnetico terrestre. L’idea in realtà non è nuova, ha almeno cinquant’anni, però aiuta a comprendere il perché tra i pianeti rocciosi del Sistema Solare la Terra sia l’unico grande pianeta roccioso 2 ad avere un campo magnetico abbastanza potente da deflettere le particelle elettricamente cariche del vento solare e dei raggi cosmici. Questo piccolo particolare ha in realtà una grande influenza sulle condizioni di abitabilità sulla crosta perché ha consentito alla vita di uscire dall’acqua dove sarebbe stata più protetta dalle radiazioni ionizzanti, ha permesso che la crosta stessa fosse abbastanza sottile e fragile da permettere l’esistenza di zolle continentali in movimento – il che consente un efficace meccanismo di rimozione del carbonio dall’atmosfera [cite]http://ilpoliedrico.com/2013/12/la-caratterizzazione-delle-super-terre-il-ciclo-geologico-del-carbonio.html[/cite][cite]http://ilpoliedrico.com/2013/07/venere-e-terra-gemelli-diversi.html[/cite] – e la stabilizzazione dell’asse terrestre.
In pratica la componente Terra Luna si comporta come Saturno con Encelado e, in misura forse minore, Giove con Europa.
Il gradiente gravitazionale prodotto dai due pianeti deforma i satelliti che così si riscaldano direttamente all’interno. Per questo Encelado mostra un vulcanismo attivo e Europa ha un oceano liquido al suo interno in cui si suppone possa esserci le condizioni ideali per supportare una qualche forma di vita. Nel nostro caso è l’importante massa della Luna che deforma e mantiene fuso il nucleo terrestre tanto da stabilizzare l’asse del pianeta, fargli generare un importante campo magnetico e possedere una tettonica attiva [cite]http://ilpoliedrico.com/2010/11/limportanza-di-un-nucleo-fuso.html[/cite].

Ora, se le nostre teorie sulla genesi lunare sono corrette 3, questo significa che una biologia così varia e complessa come quella sulla Terra è il prodotto di tutta una serie di eventi che inizia con la formazione del Sistema Solare e arriva fino all’Homo Sapiens passando attraverso la formazione del nostro curioso – e prezioso – satellite e le varie estinzioni di massa. Tutto questo la rende molto più rara di quanto suggerisca il Principio di Mediocrità. Beninteso, la Vita in sé è sicuramente un fenomeno abbastanza comune nell’Universo ma una vita biologicamente complessa da dare origine a una specie senziente capace di produrre una civiltà tecnologicamente attiva è probabilmente una vera rarità nel panorama cosmico.

Le quattro fasi che avrebbero portato la Terra ad avere un grande campo magnetico (MFI Moon-forming impact, Impatto che dette origine alla Luna)

Le quattro fasi che avrebbero portato la Terra ad avere un grande campo magnetico (MFI Moon-forming impact, Impatto che dette origine alla Luna)

Analizziamo per un attimo più da vicino il sistema Terra-Luna.
La distanza media tra il centro della Luna e il centro della Terra è di circa 384390 chilometri. Questo varia tra l’apogeo e il perigeo dell’orbita ma sostanzialmente questa è una cosa che non inficia il nostro conto.
Questo significa che nello stesso momento la parte più vicina alla Luna è distante 1,66% in meno della distanza Terra-Luna mentre la sua parte opposta lo è della stessa misura in più; tradotto in numeri la parte rivolta direttamente alla Luna dista dal suo centro 378032 km  mentre la parte più lontana 390774 km. Il 3,32% di discrepanza tra le due facce non pare poi molto, ma significa che se stabiliamo che la forza esercitata gravitazionale dal satellite sulla faccia più vicina fosse pari a 100, la forza esercitata sul lato opposto sarebbe solo del 96,74%. Il risultato è che la faccia rivolta verso la Luna è attratta da questa di più del centro del pianeta e la faccia più lontana ancora di meno, col risultato di deformare la Terra ad ogni rotazione..
Ma anche la Terra esercita la sua influenza sul suo satellite allo stesso modo. Ma essendo la Luna più piccola, anche la caduta gravitazionale tra le due facce è molto più piccola, circa 1,8%. Essendo solo un quarto della Terra ma anche 81 volte meno massiccia la forza di marea esercitata dalla Terra sulla Luna è circa 22 volte dell’opposto.
Mentre la Terra ruota si deforma di circa mezzo metro, la frizione interna spinge la crosta nel sollevarsi e ricadere e, per lo stesso meccanismo si ha produzione di calore nel nocciolo e nel mantello e il più evidente fenomeno di marea sulle grandi masse d’acqua del pianeta. Ma l’effetto mareale combinato con la rotazione terrestre fa in modo che la distribuzione delle masse sia leggermente in avanti rispetto all’asse ideale Terra-Luna. Questo anticipo disperde parte del momento angolare in cambio di un aumento della distanza media tra Terra e Luna. La durata del giorno aumenta così – attualmente – di 1,7 secondi ogni 100 000 anni mentre pian piano la Luna si allontana al ritmo di 3,8 centimetri ogni anno [cite]http://goo.gl/ALyU92[/cite], mentre la frizione mareale indotta restituisce parte del calore che sia il mantello che il nucleo disperdono naturalmente. Questo calore mantiene il nucleo ancora allo stato fuso dopo ben 4,5 miliardi di anni, permettendogli di generare ancora il campo magnetico che protegge la vita sulla superficie.
Ecco perché l’idea dell’unicità della Terra non è poi del tutto così peregrina. Non è un istinto puramente antropocentrico, quanto semmai la necessità di comprendere che la Terra e la Luna sono da studiarsi come parti di un unico un sistema che ha permesso che su questo pianeta emergessero tutte quelle condizioni favorevoli allo sviluppo di vita che poi si è concretizzata in una specie senziente. Queste condizioni avrebbero potuto crearsi altrove – e forse questo è anche avvenuto – invece che qui e allora noi non saremmo ora a parlarne. Ma è questo è quel che è successo e se questa ipotesi fosse vera farebbe di noi come specie senziente una rarità nel panorama cosmico.
Come ebbi a dire in passato, anche se il concetto non è del tutto nuovo, Noi siamo l’Universo che in questo angolo di cosmo ha preso coscienza di sé e che si interroga sulla sua esistenza. Forse questo angolo è più vasto di quanto si voglia pensare; il che ci rende ancora più unici.


Note:

La Zona Galattica Abitabile

La quasi quotidiana scoperta di pianeti extrasolari pone il problena di dove guardare per trovarne di simili alla Terra [cite]http://goo.gl/kgCavI[/cite] potenzialmente in grado di sostenere la vita. Per i sistemi planetari si parla di Zona Goldilocks o Circumstellar Habitable Zone  (CHZ) [cite]http://goo.gl/gnyLKr[/cite] ma è da supporre che analoghe considerazioni valgano anche le galassie.

 

lifeFondamentalmente lo sviluppo della Vita complessa richiede che almeno tre punti siano soddisfatti:

 

  1. La presenza di una fonte di energia costante per tempi cosmologici (oltre il miliardo di anni (1 Gyr).
  2. Elementi pesanti necessari a formare pianeti di tipo terrestre [cite]http://goo.gl/dYFao2[/cite].
  3. Ambiente sufficientemente al riparo dalle radiazioni più nocive che potrebbe mettere a rischio ogni forma di vita e la sua formazione.

 

In base a questi vincoli si deduce che il confine interno di una Galactic Habitable Zone (GHZ) è delimitato dalle perturbazioni gravitazionali e radiativi del nucleo galattico che sono di ostacolo alle biosfere planetarie stabili, mentre il limite esterno è fissato dall’indice minimo di metallicità  1 necessario alla formazione dei pianeti [cite]http://goo.gl/dYFao2[/cite]. Pertanto è evidente di come la GHZ sia vincolata dalla morfologia, evoluzione chimica ed età delle popolazioni stellari della galassia.

Una fonte di energia costante: le stelle

img_9186Una fonte costante e continua di energia sono le stelle durante la loro permanenza nella Sequenza Principale. Ma non tutte le stelle possono considerarsi adatte a sostenere la vita come la conosciamo. Le stelle più massicce hanno un ciclo vitale molto breve: dai 200 mila anni di una Wolf-Rayet con una massa superiore alle 20 M fino ai 3 Gy per le F0 (1,6 M).
Ma non è solo una questione di ciclo evolutivo: certi studi ampiamente discussi sul sito gemello [cite]http://goo.gl/7waC7J[/cite] indicano una certa correlazione tra la massa stellare e la possibilità di possedere un sistema planetario. In pratica le stelle migliori ad ospitare un sistema sono stelle di massa inferiore a 1,5 -1,6 M. Queste sono stelle di taglia medio-piccola e piccola che possono garantire almeno 4 Gy e oltre di permanenza nella Sequenza Principale e rappresentano almeno i 70 -75% delle stelle in una galassia alla stesso stadio evolutivo della nostra.

Il ruolo della metallicità delle stelle

La nebulosa “Occhio di Gatto” generata da una stella gigante tipo AGB.

La nebulosa “Occhio di Gatto” generata da una stella gigante tipo AGB.

La vita come la conosciamo è basata sull’esistenza di tanti elementi chimici più complessi dell’idrogeno ed elio, che gli astronomi chiamano per semplicità metalli, che vengono creati all’interno di stelle di grande massa e che vengono rilasciati nello spazio alla morte di queste con immani esplosioni di supernova e ipernova.  Senza questi metalli non possono formarsi i pianeti rocciosi, le atmosfere complesse, l’acqua e così via. Per comprendere meglio il ruolo dei metalli nella delimitazione di una GHZ è necessario partire dall’inizio della storia evolutiva delle galassie.
Tralasciando l’importante ruolo della materia non barionica 2 nella formazione delle galassie, dal collasso delle imponenti nubi di gas primordiale protogalattico composto unicamente da idrogeno e deuterio si formò una prima generazione di stelle: quelle più massicce si stabilirono presso il centro gravitazionale, mentre quelle più piccole (classe K e M [cite]http://goo.gl/ccspTg[/cite]) andarono a creare quello che oggi chiamiamo alone, una regione pressappoco sferica di stelle a bassa metallicità (Popolazione II e III) che circonda le galassie [cite]http://goo.gl/EnxEGT[/cite].
Nel giro di appena un miliardo di anni invece, le stelle più massicce del centro galattico  si sarebbero convertite in supernovae espellendo i loro metalli che avrebbero arricchito il mezzo interstellare esterno al nucleo. Le onde d’urto avrebbero poi innescato una seconda ondata di formazione stellare; stelle un po’ più piccole ma ricche di metalli che avrebbero poi potuto possedere anche dei pianeti rocciosi (Popolazione I). Di fatto, questo meccanismo implica che la GHZ migri nel tempo da posizioni relativamente più vicine al nucleo a porzioni sempre più esterne del disco man mano che la disponibilità di metalli aumenta verso la periferia galattica [cite]http://goo.gl/yMLtCS[/cite] 3.
Comunque, anche se è vero che un certo tenore di metallicità indica la presenza di elementi chimici complessi necessari alla formazione dei pianeti rocciosi, alcuni studi statistici sui pianeti extrasolari scoperti mostrano che esiste una pericolosa correlazione tra la presenza di grandi pianeti massicci in orbita stretta e l’alto tasso di metallicità riscontrato nella loro stella ospite [cite]http://goo.gl/Zg9L6A[/cite] [cite]http://goo.gl/Xmwa8O[/cite].  Questo curioso aspetto potrebbe escludere la presenza di pianeti più simili alla Terra che si trovano all’interno della loro CHZ e di fatto escludere dalla GHZ anche i pianeti in orbita a stelle con una metallicità elevata.
Pertanto già basandosi solo sull’indice di metallicità stellare si può abbozzare una prima stima dimensionale di una GHZ; un valore eccessivo potrebbe impedire la formazione di pianeti di taglia terrestre nella zona Goldilocks della stella ospite quanto una scarsa metallicità potrebbe impedirne proprio l’esistenza!

L’inabitabilità del nucleo galattico

Lo sconvolgente panorama del cielo visto su un pianeta immerso nel nucleo galattico.

Lo sconvolgente panorama del cielo visto su un pianeta immerso nel nucleo galattico.

Deve esserci una vista magnifica verso il Centro Galattico. Mille e mille stelle di ogni colore e taglia renderebbero un qualsiasi pianeta perennemente immerso in un perenne crepuscolo senza fine, intervallato da una fonte di luce più accecante proveniente dalla sua stella. Peccato che un pianeta simile possa essere tanto ostile alla vita umana e, probabilmente, ad ogni altra.
Sulla Terra il campo geomagnetico contro i raggi cosmici prima, e l’efficace scudo di ozono contro i raggi ultravioletti poi, hanno permesso alle primitive forme di vita acquatiche di  ergersi sulla terraferma.

O3+XXO+ O2 (dove X sta per O, NO, OH, Br e Cl)

L’ozono è una molecola triatomica dell’ossigeno altamente instabile perché cede facilmente il suo terzo atomo ad altri atomi come azoto, idrogeno, bromo e cloro. Alcuni di questi elementi sono già presenti nella stratosfera (azoto,ossigeno e idrogeno) o rilasciati dai vulcani, dal vapore acqueo e dagli oceani. La fotodissociazione indotta dalle radiazioni nell’alta atmosferica  scinde le molecole dei gas in singoli atomi molte volte più reattivi

  • N 2 -> 2N
  • O 2 -> 2O
  • CO 2 -> C + 2O
  • H 2 O -> 2H + O
  • 2NH 3 -> 3H 2 + N 2

finendo per  produrre:

  • NO 2 (consuma fino a 400 molecole di ozono)
  • CH 2
  • CH 4
  • CO 2

Ma un pianeta immerso nel nucleo galattico subirebbe un bombardamento di raggi cosmici che neanche l’azione combinata dell’eliosfera della sua stella e del campo magnetico planetario potrebbero fermare. Un tasso di radiazione appena 100 volte superiore a quello che mediamente investe la Terra [1.  Il flusso di raggi cosmici che normalmente investe la Terra è di 9×104 ergscm2yr1.] è sufficiente affinché la produzione naturale di monossido di azoto nella troposfera impedisca la formazione di uno strato di ozono stabile.
Il monossido di azoto quindi reagisce con altri atomi di ossigeno liberi trasformandosi nel micidiale diossido di azoto, un micidiale gas rossastro che tende a depositarsi al suolo. Qui il diossido di azoto è libero di convertirsi in acido nitrico e altri nitrati rendendo inospitali alla vita sia la superficie solida del pianeta che gli eventuali oceani [cite]http://goo.gl/3uHfS8[/cite].
Un flusso altrettanto simile di radiazioni può essere provocato dalle esplosioni di supernova di tipo II [cite]http://goo.gl/Fuu07j[/cite] entro un raggio di 10 pc dal pianeta [cite]http://goo.gl/1yGBu8[/cite], che presso i nuclei galattici sono statisticamente superiori che nel resto della galassia. Per questo nello stabilire una GHZ coerente occorre tener conto del rischio che eventuali esplosioni di supernova e RGB possano sterilizzare un pianeta che giace entro un raggio ben più grande del nucleo galattico.

Finora non sappiamo se la vita ha origine da materiali e reazioni chimiche che avvengono sul pianeta o sono frutto di una sequenza molto più antica che inizia già nello spazio interstellare (molte recenti scoperte spingono verso questa seconda ipotesi [cite]http://goo.gl/paIV6U[/cite]). Ma le stesse radiazioni ionizzanti che possono sterilizzare un pianeta possono benissimo distruggere i composti organici nelle comete e non solo.
Studiando le orbite dei resti della formazione stellare 4 (che per il Sole chiamiamo Nube di Oort) appare subito evidente che tanto più un sistema planetario si avvicina al nucleo galattico tanto più il pozzo gravitazionale di questo influenza e distorce le orbite dei resti cometari fino a disperderli o a farli precipitare verso il sistema planetario interno [cite]http://goo.gl/a4OajM[/cite]. Anche in questo caso i pianeti interni sarebbero continuamente sterilizzati dall’incessante bombardamento cometario a cui sono costretti.

Conclusioni

Naturalmente il concetto di GHZ fin qui espresso non è da considerarsi assoluto; possono esserci altre condizioni astrofisiche che qui non sono state prese in considerazione in grado di espandere o contrarre la zona galattica abitabile. Magari altre forme di vita potrebbero essere abbastanza tenaci da svilupparsi e prosperare anche in ambienti a noi ostili o comunque dove non ce lo aspetteremmo. Poi anche qui, nella periferia galattica esistono piccole stelle con un basso tenore di metalli e magari senza pianeti interessanti accanto a supergiganti capaci un giorno di sterilizzare altri mondi nel raggio di diversi parsec. Detta così quindi la GHZ può essere molto più frastagliata e meno definita della più nota Circumstellar Habitable Zone ma non per questo è meno intessante studiarla.

 

L’indice ESI (Earth Similarity Index)

[latexpage]

Il metodo dei transiti, che è quello usato da Kepler è basato sulla lievissima variazione di luce di una stella dovuta al transito di un pianeta davanti a questa. Per un pianeta come la Terra, il transito davanti a una stella simile al Sole causa una variazione di luminosità pari a soltanto 84 parti per milione. Invece il transito di un pianeta come Giove provoca l'affievolimento della luce della stella di circa l'1-2%. La figura mostra in scala sia un transito di Giove attraverso l'immagine del nostro sole sulla sinistra e un transito terrestre sulla destra. L'effetto della Terra è paragonabile a quello di una pulce che passa sui fari di un'auto visto da diversi chilometri di distanza.Image credit: NASA

Il metodo dei transiti, che è quello usato da Kepler è basato sulla lievissima variazione di luce di una stella dovuta al transito di un pianeta davanti a questa. Per un pianeta come la Terra, il transito davanti a una stella simile al Sole causa una variazione di luminosità pari a soltanto 84 parti per milione. Invece il transito di un pianeta come Giove provoca l’affievolimento della luce della stella di circa l’1-2%. La figura mostra in scala sia un transito di Giove attraverso l’immagine del nostro sole sulla sinistra e un transito terrestre sulla destra. L’effetto della Terra è paragonabile a quello di una pulce che passa sui fari di un’auto visto da diversi chilometri di distanza.Image credit: NASA

Appena la tecnologia lo ha permesso, negli ultimi vent’anni abbiamo assistito alla scoperta di nuovi pianeti in orbita attorno ad altre stelle. I primi sistemi planetari rilevati erano anche quelli in cui gli effetti gravitazionali erano più evidenti, come i sistemi con i gioviani caldi o con pianeti in orbite caotiche e retrograde; tant’è che all’inizio si era addirittura supposto che i modelli di formazione planetaria sviluppati per spiegare il nostro Sistema Solare non fossero poi così universalmente validi.
Con l’affinarsi dei mezzi e della ricerca, ecco comparire sistemi planetari un po’ più ordinari e ordinati, simili al nostro. Magari più spesso questi appartengono a stelle un po’ più piccole del Sole – che comunque non è affatto un gigante, semplicemente perché l’influenza di un sistema planetario sulla sua stella è anche in questo caso più facilmente misurabile.
Sono principalmente due le tecniche che hanno permesso, dal 1995 ad oggi, di individuare il maggior numero di pianeti extrasolari: la tecnica delle velocità radiali e quella dei transiti. La tecnica delle velocità radiali misura la variazione della velocità della stella mente si muove attorno al baricentro del sistema stella-pianeta. Infatti, non è corretto dire che il pianeta orbita attorno alla stella: i pianeti orbitano attorno al baricentro comune  del sistema stella-pianeta, un punto che nel caso del sistema Sole-Terra si trova all’interno del Sole e molto vicino al suo centro. Non solo il pianeta orbita attorno al baricentro del sistema, ma anche la stella orbita attorno allo stesso punto. Poiché questo movimento è legato, tramite le leggi di Keplero, alla massa della stella e del pianeta, se si conosce la massa della stella si ricava anche la massa del pianeta.
C’è un problema però: se si osservasse il nostro Sistema Solare dall’esterno e si volesse vedere l’effetto della variazione della velocità radiale della Terra sul Sole si dovrebbe fare una misura della velocità radiale con una precisione di un centimetro al secondo, cosa che al momento non è ancora possibile fare con l’attuale strumentazione. Lo strumento HARPS-N, definito il cacciatore di pianeti extrasolare e montato al Telescopio Nazionale Galileo (TNG), permette di misurare la variazione della velocità radiale delle stelle con una precisone dell’ordine del metro al secondo. Quindi, di fatto pianeti come la Terra attorno a stelle di tipo solare alla distanza Terra-Sole non sono ancora in questo momento identificabili.

L’indice ESI non è universalmente accettato dalla comunità scientifica. Per i pianeti extrasolari confermati, la massa del pianeta indicata spesso ha solo un limite inferiore e non è poi comunque molto precisa. Poi per gli esopianeti indicati da Kepler spesso non c’è una stima della massa ma solo del raggio. D’altra parte, la maggior parte pianeti extrasolari confermati non hanno una stima del raggio. Inoltre, anche la temperatura teorica si basa su ipotesi che potrebbero essere sbagliate anche di centinaia di gradi centigradi. Per finire, nell’attuale formula, l’ESI attribuisce un esponente molto alto alla temperatura col risultato di deviare anche di molto l’indice rispetto al valore effettivo del dato. Questo significa che da uno a tre parametri utilizzati per calcolare l’indice ESI è frutto di supposizioni, calcoli e raffronti col Sistema Solare, senza alcuna evidenza osservativa diretta. Alla luce di queste considerazioni, l’utilità della ESI è certamente discutibile.

La tecnica dei transiti, quella che Kepler ha sfruttato fino al default dei sui giroscopi, è teoricamente una tecnica ancora più efficiente nel trovare pianeti. Però la probabilità di avere un pianeta come la Terra in transito davanti ad una stella come il Sole è dell’ordine dell’1 percento. Inoltre, la diminuzione della luminosità del Sole durante il transito della Terra è meno di 80 parti su un milione per un periodo di appena 8 ore in un anno: una quantità infinitamente piccola in un periodo smisurato di tempo. Questa sensibilità si può ottenere solo con i telescopi spaziali, quelli terrestri sono troppo limitati dalla turbolenza atmosferica.
A  giugno di quest’anno i pianeti extrasolari accertati erano 1795, suddivisi in  1114 sistemi planetari, di cui 461 sono sistemi multipli come il nostro (fonte exoplanets.eu).  Molti di questi sono stati individuati dal fortunato telescopio spaziale Kepler della NASA che ha studiato soltanto un piccolissimo fazzoletto di cielo compreso tra le costellazioni del Cigno e della Lira grande appena 12° quadrati. Una regione  abbastanza vicina al Piano Galattico da potersi ritenere, con le opportune cautele necessarie per un qualsiasi calcolo statistico, abbastanza significativa. È così che Kepler ha potuto studiare oltre 100 ooo stelle comprese tra 600 e 3 000 anni-luce di spazio, portando a supporre che la Galassia ospiti qualcosa come 60 miliardi di pianeti potenzialmente compatibili con la vita.
Come si sia giunti a questo numero è ancora oggetto di dibattito, ma in nocciolo è tutto nel numero delle nane rosse (classi K e M) presenti nella Via Lattea, stimato in almeno 75 miliardi. Anche supponendo che solo il 6 per cento di queste abbia un pianeta compreso nella Fascia Goldilocks si arriva a ben 4,5 miliardi di pianeti considerati biologicamente compatibili. Altri studi sulla sostenibilità planetaria [cite]http://arxiv.org/abs/1307.0515[/cite] fanno lievitare la stima fino a 60 miliardi.
Però dire che ci possono essere fino a 60 miliardi di mondi potenzialmente adatti alla vita e stabilire quali possono esserlo davvero è un altro discorso. Per risolvere questo problema viene in soccorso uno strumento matematico ideato dal Dott. Schulze-Makuch , professore alla School of Earth and Environmental Sciences dell’Università statale di Washington, l’Earth Similarity Index (ESI) – in italiano Indice di Somiglianza alla Terra – che esprime il grado di similitudine tra un qualsiasi pianeta extrasolare – può essere applicato anche ai grandi satelliti naturali  – e la Terra in un valore compreso tra zero (nessuna similarità) e uno (identico alla Terra) [cite]http://online.liebertpub.com/doi/abs/10.1089/ast.2010.0592[/cite]. I parametri dell’equazione vengono calcolati partendo da una o più variabili note, come il periodo orbitale e la distanza del pianeta dalla sua stella. Queste variabili sono ovviamente influenzate dal metodo di osservazione utilizzato, e anche le altre stime successive,  quando non sono conosciute, sono frutto di  calcoli ponderati. Ad esempio, la temperatura della superficie è influenzata da una infinità di altri fattori come l’irraggiamento, l’albedo, l’inclinazione assiale e l’effetto serra atmosferico; quando questa non è conosciuta a priori viene fatto riferimento alla temperatura di equilibrio di irraggiamento.
In sostanza l’ESI è una cifra, o figura, di merito; uno strumento matematico molto usato nell’industria e in ingegneria per indicare un parametro che ne racchiude molti altri. In questo caso però i parametri fondamentali di cui si tiene conto sono indicati nella tabella 1.

[table “54” not found /]

Come vediamo questi parametri sono solo quattro. Si tratta di quattro parametri fisici facilmente ricavabili matematicamente dai dati orbitali della scoperta.

  • Raggio medio
    La scala delle dimensioni dei pianeti extrasolari è pressoché infinita; anche nel nostro Sistema Solare, la Terra è piccola rispetto a Giove e Saturno. Tuttavia alcuni studi suggeriscono che solo i pianeti che hanno un nucleo fluido in rotazione differenziale rispetto al mantello del pianeta possono avere un campo magnetico capace di proteggere la propria ecosfera dal vento stellare e dai raggi cosmici  [cite]http://arxiv.org/abs/1010.5133 [/cite]. Questi dati indicano che pianeti con un raggio superiore a due raggi terrestri possono avere difficoltà a mantenere liquido un loro  nucleo di ferro, mentre altri studi indicano che oltre 1,75 raggi terrestri debbano essere considerati sub-nettuniani i [cite]http://arxiv.org/abs/1311.0329 [/cite]
  • Densità
    Anche le densità che i pianeti extrasolari possono assumere è pressoché infinita. Per appartenere alla classe di Pianeta Roccioso simile alla Terra si considera generalmente una densità compresa tra 0,7 e 1,5 quella terrestre (4,4 -8,3 g/cm3). Questo perché una densità troppo bassa nelle dimensioni indicate, suggerite alla voce precedente, potrebbe indicare un corpo senza un nucleo metallico liquido e quindi senza un campo magnetico ben sviluppato. Questo vale anche per un pianeta troppo massiccio, il cui nucleo cristallizza per la pressione eccessiva  e si ferma.
  • Velocità di fuga
    La velocità di fuga è un parametro fondamentale per stabilire la presenza o meno di una atmosfera planetaria. Anche qui si ritiene che per un pianeta simile alla Terra la velocità di fuga debba poter trattenere gli atomi come l’azoto – e quindi anche il vapore acqueo, l’anidride carbonica e l’ossigeno,  a una temperatura di superficie media compresa tra 0 e 50° Celsius (273-323 K). Questo è un intervallo minimo, ma abbastanza ampio, in cui l’acqua si presenta allo stato liquido e può quindi esercitare il suo ruolo di solvente, funzione fondamentale per la vita.  mentre l’idrogeno, molto più leggero, è libero di disperdersi nello spazio. Pertanto la velocità di fuga di un pianeta compatibile con la vita di tipo terrestre può ritenersi compresa  tra 0,4 e 1,4 volte quelle della Terra (pari rispettivamente a sei volte la velocità di fuga dell’azoto atomico a  -18° C (255 K) e a sei volte quella dell’idrogeno atomico alla medesima temperatura).
  •  Temperatura superficiale
    Credit: Il Poliedrico

    Credit: Il Poliedrico

    La temperatura di equilibrio termico è la temperatura che possiederebbe un pianeta in assenza di una atmosfera e il cui unico fattore di regolazione è rappresentato dall’albedo ed è unicamente dettata della legge di Stefan-Boltzmann 1 e la Legge dell’Inverso del Quadrato. La temperatura di equilibrio della Terra è di soli -18°c che l’effetto serra atmosferico porta a + 15° C.

 

\[

ESI = \prod_{i=1}^n \left(1 – \left| \frac{x_i – x_{i_0}}{x_i + x_{i_0}} \right| \right)^\frac{w_i}{n}

\]

l’equazione dice come questi parametri devono essere utilizzati:

  • x i è il valore del i-esimo parametro planetario (ad esempio la temperatura superficiale)
  • x I0 è il valore del i-esimo parametro planetario di riferimento (la Terra)
  • w i è l’esponente di ponderazione assegnato al i ° parametro planetario (valore arbitrario che indica il valore relativo)
  • n è il numero di parametri planetari trattati

In questo modo vengono definiti tre diversi  indici ESI del pianeta in esame:

  • ESI Interno $\rightarrow ESI_I=(ESI_{r} \cdot ESI_{\rho})^{1/2}$
    Tiene conto del raggio del pianeta (peso dell’esponente = 0,57) e la sua densità (peso dell’esponente =  1,07). Questo indice indica il grado di somiglianza fisica dell’esopianeta alla Terra.
  • ESI Superficiale $\rightarrow ESI_S=(ESI_{ve} \cdot ESI_{Ts})^{1/2}$
    Questo è regolato dai parametri di temperatura della superficie (peso dell’esponente = 5,58) e dalla velocità di fuga (peso dell’esponente =  0,70).
    Questo esprime invece la somiglianza delle caratteristiche ambientali in riferimento alla Terra.
  • ESI Globale $\rightarrow ESI_G=(ESI_{I} \cdot ESI_{S})^{1/2}$
    È il computo basato su tutti i e quattro i parametri nella matrice di calcolo. Pertanto quantifica esattamente quanto un esopianeta sia nel suo complesso simile alla Terra o ‘Earth-like‘ per usare l’espressione anglofona più diffusa.

Riassumendo tutti i dati qui sopra elencati, si deduce che un pianeta per essere considerato simile alla Terra (e l’indice ESI quantifica proprio quanto questo si avvicini) deve essere tra 0,5 e 1,75 raggi terrestri (mantenendo nel caso più grande una densità intorno ai 4,5 g/cm3) e una massa compresa tra 0,1 e 4 volte quella della Terra. Un bel margine che lascia comunque sperare che prima o poi un pianeta davvero molto simile alla Terra si trovi.
Con molta probabilità nel corso dei prossimi vent’anni, grazie alla messa in orbita di nuovi telescopi – quali per esempio Gaia, Cheops e Plato –dotati di una strumentazione più precisa, sarà possibile trovare pianeti dimensionalmente simili alla Terra che orbitano attorno a stelle più simili Sole (classe G) a distanze paragonabili e con indici ESI molto prossimi a 1. E forse saremo anche in grado di rispondere alla domanda: la Terra è l’unico mondo che ospita la vita nell’Universo?


Note:

Alla ricerca dei giusti marcatori nei pianeti extrasolari

[latexpage]

Credit: Il Poliedrico

Credit: Il Poliedrico

L’esistenza di pianeti extrasolari è ormai accertata al di là di ogni ragionevole dubbio.
Strumenti come il satellite Kepler e la spettrometria doppler hanno mostrato che quasi ogni stella dalla classe G in giù [cite]http://ilpoliedrico.com/utility/classificazione-stellare[/cite] accoglie in sé un sistema planetario.
Anche se questa appare già come una grande scoperta dal punto di vista sia scientifico che filosofico, la domanda successiva è: quali di questi pianeti hanno le caratteristiche fisiche adatte per sostenere la vita?
Innanzitutto è necessario che la condizione primaria sia accertata, ovvero che il pianeta extrasolare  orbiti all’interno dell’ecosfera della sua stella (zona Goldilocks) e che quindi riceva la giusta quantità di energia per sostenere l’acqua liquida entro un arco abbastanza ampio di temperature. Questo significa che il pianeta non deve essere troppo piccolo, così da permettere la presenza di una atmosfera abbastanza stabile e densa da consentire la presenza costante di acqua liquida 1. A questo punto non c’è che da sperare di rilevare un pianeta che, avendo tutti i requisiti necessari, sia riuscito a sviluppare la Vita. Al di là del tentativo – per ora infruttuoso – di scovare segnali radio di altre civiltà extraterrestri, non resta che cercare altri segnali che indichino comunque la presenza di Vita. Prendendo l’unico esempio disponibile, cioè la Terra, le firme vitali più evidenti dallo spazio sono quelle d’acqua, dell’ossigeno gassoso nell’atmosfera e della clorofilla.

Confronto fra gli spettri della Terra e  di un gemello Terra convoluta per un dato spec- Risoluzione trale con una funzione di line-spread gaussiana. L'assorbimento di spicco O2  caratteristica a 0,76 micron diventa completamente mescolato con la vicina giochi d'acqua  per R    20, mentre la funzione O3 è ampio e poco profondo, e molto difficile da vedere.

Confronto fra lo spettro terrestre e quello previsto per un ipotetico pianeta gemello della Terra.  La riga di assorbimento dell’ossigeno biatomico (O2) a 0,76 micron viene quasi nascosta dal segnale dell’acqua finché la risoluzione spettrale è piuttosto bassa (R=20); mentre l’ozono (O3) rimane poco visibile a tutte le risoluzioni calcolate.

Timothy Brandt e David Spiegel dell’Institute for Advanced Study della Princeton University nel New Jersey. si sono posti questa domanda e hanno tentato di elaborare l’aspetto della firma biologica che la Vita potrebbe imprimere sullo spettro di un pianeta [cite]http://arxiv.org/abs/1404.5337[/cite].
Questo studio è necessario anche per poter ideare gli strumenti che poi saranno costruiti proprio per questo scopo. E infatti il loro studio ha dato risultati molto importanti.

La molecola di gran lunga più semplice da individuare è quella dell’acqua, anche se per i due ricercatori occorre ancora un potere di contrasto che solo un telescopio fuori dall’atmosfera può ottenere: $1$ su $10^{10}$.
Se il potere risolutivo 2 $R=20$ alle lunghezze d’onda inferiori a 760 nm (0,76 $\mu m$) è  già disponibile con la tecnologia attuale, una risoluzione maggiore (diciamo 700/5 $nm$) necessaria per distinguere correttamente il segnale dell’ossigeno molecolare è ancora al di là del limite strumentale attuale, anche se sicuramente verrà presto raggiunto dalle prossime generazioni di spettrografi. Frequenze assorbimento piante
Molto più difficile invece sarà rintracciare una qualche forma di clorofilla.
I ricercatori indicano una regione intorno a 700 $nm$ chiamata vegetation red edge (SRE), come indicatore importante della presenza di vegetazione. Osservando l’immagine qui a sinistra è evidente che (sulla Terra) tutta l’attività fotosintetica si interrompe bruscamente alla fine dello spettro visibile perché il livello di energia dei fotoni alle lunghezze d’onda più lunghe di circa 700 $nm$ non è più sufficiente per sintetizzare le molecole organiche 3. Qui la vegetazione diventa quasi trasparente nel vicino infrarosso. Questo repentino cambiamento della riflettività può essere stimato tra il 5% e il 50%  tra i 680 e i 730 $nm$.
Anche questo fenomeno, peraltro non riproducibile da nessun altro fenomeno fisico naturale, potrebbe essere un altro interessante indicatore per capire se una qualche forma di vita che faccia ricorso alla fotosintesi sia presente su un esopianeta [cite]http://arxiv.org/abs/astro-ph/0503302[/cite].

Se prendiamo le tre forme principali della clorofilla (clorofilla A e B, β carotene 4) vediamo che la capacità di assorbire la luce dove anche c’è il picco massimo di assorbimento, intorno ai 400 – 500 $nm$ 5, mentre solo una minuscola parte dello spettro rosso viene coinvolta nel ciclo della fotosintesi.  Nelle piante superiori i pigmenti sono per la maggior parte clorofilla del tipo A e del tipo B.
Le clorofille assorbono la luce rossa e blu e trasmettono e riflettono quella verde, da questo dipende la colorazione della maggior parte delle piante.
Le altre due che ho menzionato nell’immagine, la ficoeritrina 6 e la ficocianina 7 sono solo, come ho spiegato  nelle note, dei pigmenti accessori della Clorofilla A.
Questo fa sì che il meccanismo della fotosintesi, almeno sulla Terra, sia estremamente efficiente nell’intercettare e sfruttare ogni singolo joule di energia luminosa emesso dal Sole nello spettro visibile. Però non sappiamo se un meccanismo simile sia presente e come possa essere strutturato su un altro pianeta, ma è possibile – in linea di massima – immaginarlo.

spettro.coloreLa radiazione emessa da una stella (nel nostro caso il Sole) emette una radiazione approssimata di corpo nero il cui picco è centrato sulla banda visibile dello spettro elettromagnetico. Quindi c’è da aspettarsi che, piuttosto ragionevolmente, questo sia vero anche per le altre stelle.
E siccome il picco di corpo nero varia in funzione della temperatura superficiale della stella, è naturale pensare che su pianeti di altre stelle se mai si fosse sviluppata come la fotosintesi 8 [cite]http://pubs.rsc.org/en/content/articlelanding/2011/nj/c0nj00652a/[/cite], tale processo si sarà ottimizzato proprio per recepire il picco massimo della radiazione incidente alla superficie del pianeta 9  [cite]http://arxiv.org/abs/astro-ph/0701391[/cite].

A questo punto appare evidente che la ricerca di altre forme di vita su altri pianeti  non è così poi al di fuori della portata , anche strumentale, di quanto si possa credere. Anche le speculazioni, perfino sulle forme di certi processi biologici, su cosa cercare certo non mancano. Magari mi lascia perplesso l’impronta dell’ossigeno, ma questo sarà un tema che verrà affrontato prossimamente.


Note:

La caratterizzazione delle Super-Terre: Il ciclo geologico del carbonio

[latexpage]

Se credi che una certa cosa possa essere improbabile, almeno cerca di togliere l’impossibile e forse quello che ne rimane è potenzialmente vero.
Se un giorno riuscissimo a scoprire un’altra Terra, è altamente improbabile che questa presenti uno stadio evolutivo simile al nostro. La Terra è infatti ben lontana dall’essere un sistema statico fin dal momento della sua formazione avvenuta circa 4,6 miliardi di anni fa. Al contrario, per tutto questo tempo ha subito numerosi cambiamenti nella composizione atmosferica, nella temperatura, nella distribuzione dei continenti, senza parlare delle numerose e diverse forme di vita che l’hanno occupata. Tutti questi cambiamenti si sono riflessi nell’aspetto che potrebbe essere visto a distanze astronomiche. Ogni scenario ha avuto la sua firma caratteristica, e adesso saper riconoscere queste impronte in altri pianeti può aiutarci a capire se questi possono essere stati o esserlo nel futuro, potenzialmente abitabili.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Nel corso degli ultimi quattro anni è stato possibile scoprire parecchi pianeti nell’intervallo di massa tra 2 e 10 masse terrestri, quelli che vengono definiti  Super-Terre; alcuni di questi pianeti si vengono a trovare dentro oppure si trovano vicini alla zona di abitabilità della loro stella ospite. Recentemente sono stati annunciati nuovi pianeti delle dimensioni della nostra Terra e della nostra Luna, e questo numero sicuramente aumenterà in futuro.
Le prime statistiche hanno messo in evidenza che circa il 62% delle stelle della nostra Galassia potrebbero ospitare un pianeta delle dimensioni della nostra Terra mentre studi compiuti dalla missione Kepler della NASA indicano che circa il 16,5% delle stelle hanno almeno un pianeta delle dimensioni del nostro con periodi orbitali fino a 85 giorni.
Per poter caratterizzare queste esoterre scoperte dobbiamo prima di tutto dare uno sguardo al nostro Sistema Solare e ai suoi pianeti. La Terra è per ora l’unico pianeta conosciuto in cui esiste la vita; di conseguenza le osservazioni del nostro pianeta saranno una chiave fondamentale per lo studio e la ricerca della vita altrove.

Intanto, poter definire come un pianeta sia potenzialmente vivibile non è affatto facile, ci sono talmente tante condizioni al contorno da soddisfare che non è facile considerarle tutte. Una di queste impone che per sostenere la vita come la conosciamo, un pianeta debba permettere all’acqua di esistere allo stato liquido sulla sua superficie. Indicativamente, e forse in modo piuttosto semplicistico, spesso questa condizione viene identificata come la fascia – o zona – Goldilocks, quella zona né troppo lontana e né troppo vicina alla stella dove la radiazione consente all’acqua di esistere allo stato liquido su un pianeta. Quindi si tratta solo di un mero dato orbitale che ben poco ha a che vedere con la realtà: ad esempio, sulla Luna la presenza di ‘acqua allo stato liquido non è possibile anche se ne esiste una certa quantità allo stato solido (ghiaccio); eppure condivide con la Terra la stessa zona di abitabilità.

Quello che veramente occorre ad un pianeta perché possa essere considerato potenzialmente vivibile è un ambiente abbastanza stabile nel tempo che non sia soggetto a parossismi orbitali che periodicamente farebbero congelare o arrostire la sua superficie e un ambiente abbastanza ricco di energia da poter essere sfruttata dalle forme di vita. Se per risolvere il primo caso basta che l’eccentricità dell’orbita del pianeta sia prossima a zero, per il secondo caso il discorso si fa un attimino più complicato: occorre che la pressione ambientale consenta all’acqua di mantenere lo stato liquido in un ampio spettro di temperature e un meccanismo che garantisca che anche la temperatura sia più o meno stabile all’interno di questo intervallo 1 .

Il ciclo geologico del carbonio

Per la sua capacità di trattenere la radiazione infrarossa, l’anidride carbonica è un importante termoregolatore per la superficie di un pianeta 2.
Il modo in cui questa molecola riesce a passare dall’atmosfera al mare, al fondale marino e poi di nuovo all’atmosfera è affascinate, anche se richiede molto tempo e un prerequisito essenziale: la presenza di una tettonica a placche [cite] http://ilpoliedrico.com/2013/07/venere-e-terra-gemelli-diversi.html [/cite].

In questo ciclo alcune molecole di anidride carbonica ($CO_2$) atmosferica si disciolgono nell’acqua ($H_2O$) 3 formando acido carbonico .

CO2+H2OH2CO3

Un meccanismo molto efficace e che deve essere stato senz’altro presente fin dalle prime fasi della costituzione di una crosta solida è la pioggia. La pioggia ha anche un altro compito importante nell’evoluzione planetaria: desaturando un’atmosfera primordiale ricchissima di vapore acqueo 4 rafforza il processo di raffreddamento della superficie e facilita lo scorrimento delle prime zolle tettoniche necessarie per l’ultima fase del ciclo del carbonio.
Adesso l’acido carbonico disciolto nell’acqua è libero di dissolversi nelle rocce con cui viene a contatto, siano esse quelle esposte alle precipitazioni o i fondali marini. Una reazione che potrebbe essere piuttosto comune è la seguente, dove i silicati di calcio ($CaSiO_3$) svolgono un ruolo fondamentale nel ciclo:

CaSiO3+2H2CO3Ca2++2HCO3+H2SiO3

tutti i membri di destra, gli ioni di calcio ($Ca^{2+}$), gli ioni  di idrogenocarbonato (${2HCO_3}^{-}$) 5 e l’acido silicico ($H_2 SiO_3$) sono ancora soluzioni acquose che potrebbero finire negli oceani.
Ben presto l’idrogenocarbonato viene a trovarsi in equilibrio con l’anidride carbonica disciolta nell’acqua secondo la seguente formula:

2HCO3CO3ì2+H2O+CO2

Quando la concentrazione di ioni carbonato (${CO_3}^{2-}$) aumenta, questi interagiscono con gli ioni di calcio visti prima e precipitano sotto forma di carbonato di calcio ($CaCO_3$) creando così minerari come la calcite e l’aragonite.
Questo è solo un esempio di come il carbonio atmosferico riesca a passare dalla forma gassosa nell’aria alla forma solida nella crosta planetaria. Il ruolo fondamentale di questo meccanismo è la presenza dell’acqua come solvente che ne consente il transito.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Il risultato di questo scambio sono minerali come la calcite che testimoniano la sottrazione del carbonio dall’atmosfera e che possono finire sepolti anche molto in profondità, al di sotto delle zolle tettoniche. Da qui poi, grazie all’attività vulcanica, il carbonio intrappolato nelle rocce potrebbe tornare di nuovo nell’atmosfera.
Se il meccanismo di sottrazione del carbonio dall’atmosfera dovesse venir meno per un calo eccessivo della temperatura globale, il naturale degassamento della crosta e del mantello tramite l’attività vulcanica dovrebbe far aumentare la concentrazione di $CO_2$ atmosferica e di conseguenza la temperatura. Altresì, un aumento eccessivo della temperatura dovrebbe permettere una maggior efficienza dei meccanismi di estrazione e quindi all’abbassamento di questa 6.
Il meccanismo del ciclo geologico del carbonio è complesso e comunque i suoi tempi di risposta sono piuttosto lunghi. Penso piuttosto a come l’equilibrio tra solvente (l’acqua del pianeta) e soluto (anidride carbonica) possa già di per sé portare ad una sottrazione dei due maggiori gas serra dall’atmosfera planetaria e alla stabilizzazione verso il basso della temperatura planetaria quando le condizioni ambientali consentono l’innescarsi di questo processo.

(continua …)


Note: